Boletim AM

A verdade está nos dados

Receba toda terça-feira pela manhã em seu e-mail nossa newsletter com um compilado de exemplos reais de exercícios de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas. Aqui, você vê na prática como coletar, tratar, analisar e apresentar dados reais que você usa no seu dia a dia.

Veja os nossos exercícios mais recentes

Regimes inflacionários com Modelo Oculto de Markov usando Python

Neste exercício, utilizamos Python para aplicar um Modelo Oculto de Markov (HMM) na identificação e análise de regimes inflacionários no Brasil, com base na série temporal do IPCA mensal.

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Como preparar os dados para um modelo preditivo?

Modelos de previsão macroeconômica podem facilmente alcançar um número elevado de variáveis. Mesmo modelos simplificados, como o Modelo de Pequeno Porte (MPP) do Banco Central, usam cerca de 30 variáveis. Isso impõe um grande desafio ao nosso dia a dia: como fazer a gestão destes dados para uso em modelos, desde a coleta até o tratamento?

Transfer Learning para Previsão de Séries Temporais com o Python

A aprendizagem por transferência (ou transfer learning) é a técnica de reutilizar um modelo previamente treinado em um novo problema. Esse conceito representa um grande avanço para a previsão de variáveis, especialmente aquelas organizadas ao longo do tempo, como séries temporais. Neste post, exploramos como usar transfer learning com Python para trabalhar com esse tipo de dado.

Como usar o Python para tratar e manipular dados financeiros

Este exercício tem como objetivo apresentar a biblioteca pytimetk para a manipulação de dados financeiros no Python. Utilizaremos como exemplo ações brasileiras, demonstrando como carregar, estruturar, manipular e visualizar esses dados.

Como usar o Python para tratar e manipular dados de Séries Temporais

Este exercício tem como objetivo apresentar a biblioteca pytimetk para a manipulação de dados em séries temporais no Python. Utilizaremos como exemplo os núcleos de inflação, demonstrando como carregar, estruturar, manipular e visualizar esses dados.

Um modelo explicativo para a inflação de alimentos

É notável que os preços de produtos alimentícios subiram consideravelmente nos últimos anos. De 2010 para cá a inflação de alimentos foi de 211%, enquanto que a inflação cheia foi de 138%, uma diferença de ~4.9% por ano. Aquela estourou o intervalo da meta de inflação em 13 anos, enquanto esta estourou 5 anos. O que explica esta diferença gritante?

Aplicação de Cadeias de Markov Ocultas (HMMs) para Finanças usando Python

Neste exercício, criamos um tutorial no Python de como usar o Hidden Markov Models, utilizando como exemplo a detecção de mudanças de regime nos retornos mensais do Ibovespa, identificando períodos de alta e baixa volatilidade

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp