Tag

contas nacionais Archives - Análise Macro

Gerando previsões desagregadas de séries temporais

By | Data Science

Frequentemente, séries temporais podem ser desagregadas em vários atributos de interesse. Por exemplo1, o número total de veículos produzidos no país ao longo do tempo pode ser dividido em veículos comerciais leves, caminhões, ônibus, etc. Cada uma dessas categorias pode ainda ser desagregada em outros níveis, por regiões, por fabricante, etc., caracterizando o que pode ser chamado de "séries temporais hierárquicas".

Essa riqueza de informação e dados possibilita (e pode ser de interesse) gerar previsões desagregadas das séries, de modo que os pontos de previsão das séries desagregadas possam ser analisados individualmente e que, quando agregados de alguma forma, sejam coerentes com os valores agregados da série.

De modo geral, podemos representar o exemplo como:

Ou seja, para qualquer observação no tempo t, as observações no nível inferior da hierarquia serão agregadas para formar as observações da série acima.

Previsão hierárquica

Existem várias abordagens para gerar previsões hierárquicas com séries temporais, a mais comum e intuitiva é a bottom-up (de baixo para cima), onde primeiro geramos as previsões para cada série no nível inferior e, em seguida, somamos os pontos de previsão para obter previsões da série acima.

Por outro lado, a abordagem top-down (de cima para baixo) envolve primeiro a geração de previsões para a série agregada e, em seguida, desagregá-la na hierarquia utilizando proporções (geralmente baseadas na série histórica).

Ainda existem outras abordagens como a do Minimum Trace e suas variantes, sendo que cada uma tem seus prós e contras. Para se aprofundar no tema veja Forecasting: principles and practice de Hyndman, R.J., & Athanasopoulos, G. (2021), que apresenta detalhes sobre as abordagens disponíveis.

Exemplo: dados de produção da ANFAVEA

Mensalmente a ANFAVEA disponibiliza séries temporais da produção, licenciamento, exportação, etc. de veículos. Os dados são desagregados pelas categorias citadas acima e neste exemplo iremos explorar alguns métodos de gerar modelos de previsão para as séries de produção de veículos.

Primeiro, para reproduzir o código certifique-se de que tenha os seguintes pacotes em sua instalação do R:

# Carregar pacotes/dependências
library(magrittr)
library(GetBCBData)
library(dplyr)
library(tsibble)
library(fabletools)
library(ggplot2)
library(lubridate)
library(fable)

Para importar as séries podemos usar o banco de dados do Banco Central (BCB) através do pacote GetBCBData, bastando apontar os códigos de coleta obtidos diretamente no site da instituição.

raw_anfavea <- GetBCBData::gbcbd_get_series(
id = c(
"Total" = 1373,
"Comerciais leves" = 1374,
"Caminhões" = 1375,
"Ônibus" = 1376
),
first.date = "1993-01-01",
use.memoise = FALSE
)

Além disso fazemos o tratamento necessário para obter um objeto de classe tsibble, pois precisamos desse formato para a próxima etapa de modelagem e previsão:

anfavea <- raw_anfavea %>%
dplyr::select("date" = "ref.date", "variable" = "series.name", "value") %>%
dplyr::mutate(date = tsibble::yearmonth(.data$date)) %>%
tsibble::as_tsibble(key = "variable", index = "date")
anfavea

Uma rápida visualização dos dados sempre é importante:

anfavea %>%
fabletools::autoplot(value) +
ggplot2::facet_wrap(
~variable, 
scales = "free_y"
) +
ggplot2::labs(
title = "Produção de veículos desagregada - Brasil",
x = NULL,
y = "Unidades",
caption = "Dados: ANFAVEA | Elaboração: analisemacro.com.br"
) +
ggplot2::theme(legend.position = "none")

Para gerar previsões hierárquicas usaremos a família de pacotes do tidyverts (você não leu errado), que possibilita um fluxo de trabalho em apenas 5 passos:

1) Transforme os dados para um objeto tsibble contendo as séries desagregadas do nível inferior (em nosso exemplo todas exceto o "Total");

2) Utilize fabletools::aggregate_key() para definir a estrutura de agregação;

3) Especifique um modelo a ser estimado com fabletools::model() para cada série e suas desagregações;

4) Utilize fabletools::reconcile() para indicar uma abordagem (bottom-up, top-down, etc.) para gerar previsões desagregadas coerentes de acordo com o modelo;

5) Por fim, use a função fabletools::forecast() para gerar previsões para toda a estrutura de agregação.

Especificando a hierarquia da série:


prod_veiculos <- anfavea %>%
dplyr::filter(!variable == "Total") %>%
fabletools::aggregate_key(variable, value = sum(value, na.rm = TRUE))
prod_veiculos

Estimar modelos restringindo a amostra e apontar abordagens de previsão hierárquica:


fit <- prod_veiculos %>%
dplyr::filter(lubridate::year(.data$date) <= 2017) %>%
fabletools::model(baseline = fable::ETS(value)) %>%
fabletools::reconcile(
bottom_up = fabletools::bottom_up(baseline),
top_down = fabletools::top_down(baseline),
ols = fabletools::min_trace(baseline, method = "ols")
)
fit

Gerar previsões fora da amostra:


fcst <- fabletools::forecast(fit, h = "2 years")
fcst

Visualizar previsões geradas (produção agregada e desagregada):


fcst %>%
fabletools::autoplot(
dplyr::filter(
prod_veiculos,
dplyr::between(
lubridate::year(.data$date),
2015,
2019
)
),
level = NULL,
size = 1.1
) +
ggplot2::facet_wrap(
~variable,
scales = "free_y"
) +
ggplot2::labs(
title = "Previsão hierárquica da produção de veículos",
y = "Unidades",
x = NULL
)

Calcular métricas de acurácia:


fcst %>%
dplyr::filter(fabletools::is_aggregated(variable)) %>%
fabletools::accuracy(prod_veiculos) %>%
dplyr::arrange(RMSE)

O objeto fcst de classe fable contém as previsões baseline bem como as previsões coerentes de cada abordagem, para as três categorias de veículos desagregadas e para a produção total. Vale enfatizar que as previsões agregadas baseline serão diferentes das previsões agregadas pela abordagem bottom_up, por exemplo.

Dado a escala das séries em diferentes níveis de agregação serem bastante diferentes, devido à agregação, deve-se tomar cuidado ao avaliar as métricas de acurácia. Acima exibimos a acurácia para a série agregada (produção total) conforme cada abordagem/modelo.

Neste caso, agregar as previsões baseline usando a abordagem top-down resultou em previsões mais precisas em comparação com a abordagem bottom-up.

Por fim, vale destacar que o objetivo desse exercício não contempla nenhum aprofundamento ou preocupação com a especificação econométrica, ajuste ou acurácia do(s) modelo(s), focando apenas na implementação prática de previsões hierárquicas.

 

Referências

Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on <2021-12-23>.

Athanasopoulos, G., Ahmed, R. A., & Hyndman, R. J. (2009). Hierarchical forecasts for Australian domestic tourism. International Journal of Forecasting, 25, 146–166.

Gross, C. W., & Sohl, J. E. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting, 9, 233–254.

Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589.

Panagiotelis, A., Athanasopoulos, G., Gamakumara, P., & Hyndman, R. J. (2021). Forecast reconciliation: A geometric view with new insights on bias correction. International Journal of Forecasting, 37(1), 343–359.

Wickramasuriya, S., Athanasopoulos, G., & Hyndman, R. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association, 114(526), 804–819.


1 Outros exemplos comuns de séries temporais que podem ser desagregadas são: IPCA, IGP-M, Contas Nacionais, produção industrial, consumo de energia elétrica, etc.

 

Análise do PIB em 2020 com o R

By | Comentário de Conjuntura

O IBGE divulgou na semana passada o resultado das Contas Nacionais Trimestrais referentes ao último trimestre de 2020. Com efeito, fazemos nesse Comentário de Conjuntura uma análise dos principais resultados da pesquisa, com foco na análise automatizada com o R. Os dados são coletados diretamente do SIDRA/IBGE, tratados e apresentados em uma apresentação em pdf.

Membros do Clube AM têm acesso completo à apresentação e aos códigos que a geraram. 

Os dados são acessados e tratados com o código abaixo:


# PIB com ajuste sazonal
pib_sa = get_sidra(api='/t/1621/n1/all/v/all/p/all/c11255/90707/d/v584%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
mutate(var_marginal = (Valor/lag(Valor,1)-1)*100) %>%
select(date, Valor, var_marginal) %>%
rename(pib_sa = Valor) %>%
as_tibble()
# PIB sem ajuste
pib = get_sidra(api='/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
mutate(var_interanual = (Valor/lag(Valor,4)-1)*100) %>%
mutate(var_anual = acum_i(Valor, 4)) %>%
dplyr::select(date, Valor, var_interanual, var_anual) %>%
rename(pib = Valor) %>%
as_tibble()
# Juntar os dados
df_pib = inner_join(pib_sa, pib, by='date') %>%
drop_na()

Na sequência, criamos uma tabela resumo com os últimos resultados.

PIB: números-índices e variações
Trimestre PIB_SA Variação Marginal PIB Variação Interanual Variação Anual
2019 Q3 170.84 -0.11 174.02 1.33 1.41
2019 Q4 171.46 0.36 172.09 1.64 1.41
2020 Q1 167.93 -2.06 166.85 -0.27 1.05
2020 Q2 152.46 -9.21 151.59 -10.90 -2.05
2020 Q3 164.14 7.66 167.24 -3.90 -3.38
2020 Q4 169.33 3.16 170.12 -1.14 -4.06

A tabela ilustra o tombo do PIB em 2020, -4,06%, cerca da metade do que era esperado no início da pandemia, para quem gosta de ver o copo meio cheio. O gráfico a seguir ilustra a recuperação em V da economia.

Na sequência, nós podemos ver as principais métricas de crescimento em um único gráfico múltiplo.

Na sequência, nós abrimos o PIB pelos componentes de demanda e de oferta. Primeiro, nós observamos a variação na margem, contra o trimestre imediatamente anterior.

PIB e seus componentes: Variação na margem
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q3 1.45 0.26 0.33 -0.11 0.59 2.63 -0.16 -0.52 2.75
2019 Q4 -0.25 -0.25 0.09 0.36 0.28 -2.49 -0.11 2.18 -5.32
2020 Q1 2.01 -0.95 -2.10 -2.06 -1.91 2.38 -0.68 -2.19 -0.33
2020 Q2 -0.87 -13.14 -8.65 -9.21 -11.26 -16.30 -7.69 1.11 -11.84
2020 Q3 -0.59 15.43 6.42 7.66 7.74 10.69 3.46 -1.99 -9.64
2020 Q4 -0.46 1.85 2.67 3.16 3.39 19.99 1.08 -1.36 22.02

A recuperação do PIB na margem se mostrou bastante robusta nos últimos dois trimestres do ano. A FBCF teve crescimento de dois dígitos nesse período, enquanto a indústria, pelo lado da oferta, também avançou com ímpeto. O gráfico abaixo ilustra.

Na sequência, observamos a comparação interanual.

PIB e seus componentes: Variação interanual
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q3 1.07 0.51 1.35 1.33 2.13 4.10 -1.14 -3.31 2.16
2019 Q4 -1.44 1.02 1.76 1.64 2.32 0.47 -0.11 -4.76 0.57
2020 Q1 4.03 -0.32 -0.65 -0.27 -0.75 5.97 -0.78 -2.40 5.19
2020 Q2 2.47 -14.10 -10.25 -10.90 -12.25 -13.91 -8.46 0.70 -14.61
2020 Q3 0.38 -0.90 -4.80 -3.90 -5.98 -7.75 -5.25 -1.11 -25.03
2020 Q4 -0.41 1.24 -2.16 -1.14 -2.98 13.52 -4.07 -4.29 -3.09

A comparação interanual mostra a indústria e a FBCF com variações positivas no último trimestre, enquanto os demais componentes, tanto pelo lado da oferta quanto pelo lado da demanda, mostram ainda números negativos.

Por fim, olhamos a variação acumulada em quatro trimestres.

PIB e seus componentes: Variação acumulada em 4 trimestres
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q3 1.73 0.02 1.64 1.41 2.03 4.26 -0.56 1.67 2.11
2019 Q4 0.63 0.37 1.66 1.41 2.19 3.36 -0.45 -2.38 1.13
2020 Q1 1.59 0.47 1.02 1.05 1.48 4.23 -0.58 -2.48 3.06
2020 Q2 1.95 -3.18 -1.93 -2.05 -2.08 -0.88 -2.63 -2.48 -1.57
2020 Q3 1.78 -3.55 -3.48 -3.38 -4.11 -4.02 -3.67 -1.91 -9.04
2020 Q4 1.96 -3.48 -4.47 -4.06 -5.46 -0.78 -4.68 -1.76 -9.95

Quando o crescimento é suavizado, vemos que o único setor que ainda apresenta números positivos é a agropecuária. Todos os demais componentes do PIB foram para o terreno negativo em 2020, graças à pandemia do novo coronavírus. Os gráficos abaixo ilustram.

_______________________

 

Análise da Taxa de Poupança com o R

By | PIB

Uma das questões postas na atual difícil conjuntura que vivemos é o aumento da taxa de poupança. Alguns jornalistas e mesmo analistas de mercado têm apontado para um aumento da poupança em resposta às dificuldades impostas pela pandemia. Dadas as suas repercussões sobre o consumo e, consequentemente, sobre a recuperação do nível de atividade, foi até mesmo um ponto relevante no último Relatório de Inflação divulgado pelo Banco Central.

Para nivelar o terreno, alguma informação inicial. Para fazer uma análise da poupança, precisaremos recorrer à taxa de poupança trimestral e à taxa de poupança acumulada em quatro trimestres, de modo a dar alguma perspectiva de tendência sobre os números.

Sempre lembrando que a taxa de poupança é dada pela Poupança Bruta sobre o Produto Interno Bruto - viu como as aulas de Contabilidade Social são importantes?

Feita a ressalva, vamos aos dados. Os dados de poupança encontram-se no SIDRA/IBGE, na parte de Contas Nacionais Trimestrais, especificamente nas Contas Econômicas Integradas (CEI). Caso não lembre bem disso, considere fazer nosso Curso de Macroeconomia com Laboratórios de R. O pedaço de código abaixo é o início do script que usei para fazer esse exercício. Ele carrega alguns pacotes e baixa os dados da poupança trimestral para o R.


####################################################
##### Análise da Poupança nas Contas Nacionais #####

library(sidrar)
library(tidyverse)
library(RcppRoll)
library(scales)
library(zoo)
library(seasonal)
library(tsibble)
library(feasts)

### Coletar dados individuais do SIDRA/IBGE ###

poupanca = get_sidra(api='/t/6726/n1/all/v/all/p/all/d/v9774%201') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
rename(tx_poupanca_tri = Valor) %>%
select(date, tx_poupanca_tri)

De posse da poupança trimestral, vamos avançar e calcular a poupança acumulada em quatro trimestres. Para isso, precisaremos da poupança bruta e do produto interno bruto. O código abaixo pega os dados das Contas Econômicas Integradas, disponíveis no SIDRA/IBGE e já executa os cálculos que precisamos.


#### Acumular dados em quatro trimestres ###

tabela_cei = get_sidra(api='/t/2072/n1/all/v/933,940/p/all') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
select(date, `Variável`, 'Valor') %>%
spread(`Variável`, 'Valor') %>%
mutate(pib_4t = roll_sum(`Produto Interno Bruto`,4,
fill=NA, align='right'),
pb_4t = roll_sum(`(=) Poupança bruta`,4,
fill=NA, align='right')) %>%
mutate(tx_poupanca = pb_4t/pib_4t*100) %>%
as_tibble()

Temos agora tanto a taxa trimestral quanto a taxa acumulada em quatro trimestres. Mas há mais uma coisa a fazer. Se você reparar bem, vai ver que existe um efeito sazonal na taxa de poupança. O código a seguir junta os dois tibbles acima e dessazonaliza os dados.


data = inner_join(tabela_cei, poupanca, by='date') %>%
mutate(poupanca_sa = final(seas(ts(tx_poupanca_tri,
start=c(2000,01),
freq=4))))

O gráfico abaixo ilustra o comportamento das três séries.

De fato, a poupança acumulada em 4 trimestres e a poupança dessazonalizada estão crescendo desde o ano passado. Com um crescimento pronunciado entre o quarto trimestre de 2019 e o segundo de 2020. A seguir, deixamos claro a sazonalidade da poupança, que costuma cair no último trimestre do ano.

De posse dos dados, fica a cargo do leitor criar a melhor narrativa...

_____________

(*) Para ter acesso aos códigos completos do exercício, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições abertas para as Turmas Especiais dos nossos Cursos de Macro Aplicada.

 

Análise do PIB no 2º Trimestre com o R

By | Comentário de Conjuntura

O IBGE divulgou hoje de manhã o resultado das Contas Nacionais Trimestrais no 2º trimestre. Os dados vieram em linha com o esperado pelas projeções, a despeito de uma maior incerteza, diga-se. O PIB teve variação de -9,69% na comparação com o 1º trimestre de 2020 e de -11,43% na comparação com o mesmo trimestre do ano anterior. A análise do PIB, diga-se, conta com script automático que é ensinado no nosso Curso de Análise de Conjuntura usando o R. A seguir, um resumo dos dados.

PIB: números-índices e variações
Trimestre PIB_SA Variação Marginal PIB Variação Interanual Variação Anual
2019 Q1 168.82 0.56 165.81 0.59 1.10
2019 Q2 169.59 0.46 168.70 1.08 1.11
2019 Q3 169.69 0.06 172.89 1.19 1.02
2019 Q4 170.60 0.54 171.17 1.67 1.14
2020 Q1 166.41 -2.46 165.39 -0.25 0.93
2020 Q2 150.28 -9.69 149.41 -11.43 -2.21

Os dados são coletados diretamente do SIDRA/IBGE a partir do uso do pacote sidrar, de forma que é possível integrar no mesmo ambiente as etapas de coleta, tratamento e apresentação dos dados. Como é possível ver na tabela acima, houve uma queda de 2,21% no acumulado em 4 trimestres. A seguir, damos um zoom sobre a variação marginal, na abertura por componentes do PIB, tanto do lado da oferta quando do lado da demanda.

PIB e seus componentes: Variação na margem
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q1 -1.01 0.08 0.93 0.56 0.76 -0.98 0.59 -3.60 -2.12
2019 Q2 1.13 0.71 -0.04 0.46 0.33 2.87 -0.28 -2.60 4.85
2019 Q3 1.09 0.54 0.14 0.06 0.51 1.54 -0.40 -2.21 0.16
2019 Q4 -0.69 0.06 0.56 0.54 0.40 -3.49 0.44 2.33 -2.58
2020 Q1 0.50 -0.82 -2.24 -2.46 -1.92 2.29 0.22 -1.32 0.81
2020 Q2 0.43 -12.29 -9.71 -9.69 -12.54 -15.43 -8.85 1.84 -13.25

Pelo lado da demanda, a Formação Bruta de Capital Fixo (FBCF) registrou queda de 15,43% na comparação com o primeiro trimestre, enquanto no lado da oferta a Indústria registrou queda de 12,29%. Na sequência, mostramos os gráficos da variação na margem.

A seguir, damos um zoom sobre a variação contra o mesmo trimestre do ano anterior. Novamente, é possível ver o impacto da pandemia sobre a Formação Bruta de Capital Fixo (FBCF), com uma queda de 15,20%.

PIB e seus componentes: Variação interanual
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q1 0.89 -0.98 1.17 0.59 1.54 1.09 0.04 -1.63 -2.31
2019 Q2 1.43 0.29 1.15 1.08 1.83 5.44 -0.69 1.27 4.86
2019 Q3 2.06 0.96 1.03 1.19 1.91 2.86 -1.41 -4.40 2.19
2019 Q4 0.44 1.46 1.64 1.67 2.06 -0.36 0.33 -5.07 -0.22
2020 Q1 1.90 -0.12 -0.45 -0.25 -0.73 4.27 0.00 -2.23 5.13
2020 Q2 1.21 -12.69 -11.17 -11.43 -13.47 -15.20 -8.57 0.54 -14.87

Na sequência, vemos os gráficos dessa métrica.


Como é possível verificar, os números são superlativos, à exceção da agropecuária, pelo lado da oferta e das exportações, pelo lado da demanda. Na sequência, suavizamos as variações com o acumulado em quatro trimestres.

PIB e seus componentes: Variação acumulada em 4 trimestres
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q1 2.52 0.05 1.25 1.10 1.59 3.58 0.23 2.42 5.70
2019 Q2 2.69 -0.08 1.22 1.11 1.59 4.27 -0.13 3.43 5.35
2019 Q3 2.03 -0.05 1.12 1.02 1.67 3.05 -0.76 1.59 2.41
2019 Q4 1.25 0.46 1.25 1.14 1.84 2.24 -0.44 -2.54 1.11
2020 Q1 1.56 0.67 0.85 0.93 1.28 3.00 -0.45 -2.68 2.89
2020 Q2 1.50 -2.55 -2.22 -2.21 -2.50 -2.12 -2.42 -2.85 -1.84

No acumulado em quatro trimestres, o PIB experimenta queda de 2,21% até o segundo tri de 2020. Com uma generalizada, tanto na oferta quanto na demanda, à exceção da agropecuária. Na sequência, os gráficos.

Não há dúvidas quanto à profundidade do impacto da pandemia sobre o nível de atividade. E, também, o fato da economia brasileira ter entrado em recessão técnica.

(*) A apresentação que construímos no nosso Curso de Análise de Conjuntura usando o R está disponível aqui.

____________________

PIB cresceu 1,1% em 2019

By | PIB

O IBGE divulgou hoje pela manhã o resultado das Contas Nacionais no 4º trimestre. Com efeito, sabemos que o PIB cresceu 1,1% no ano passado, como era amplamente esperado pelo mercado. Na margem, contra o 3º trimestre, o PIB cresceu 0,5% e na comparação interanual, contra o mesmo trimestre do ano anterior, houve crescimento de 1,7%. A tabela a seguir resume os dados de crescimento dos componentes do PIB tanto pelo lado da oferta quanto pela demanda.

Variação dos Componentes do PIB (%)
Margem Trimestral Anual 2 anos
Agro -0,4 0,4 1,2 2,6
Ind 0,2 1,5 0,5 1,0
Serv 0,6 1,6 1,2 2,8
PIB 0,5 1,7 1,1 2,5
Consumo 0,5 2,1 1,8 3,9
Governo 0,4 0,3 -0,4 -0,1
FBCF -3,3 -0,4 2,2 6,2
Exportação 2,6 -5,1 -2,5 1,4
Importação -3,2 -0,2 1,1 9,5

Como é possível verificar, o destaque negativo pelo lado da demanda foi a queda de 3,3% na margem na Formação Bruta de Capital Fixo (FBCF). Isso, de fato, é uma péssima notícia em um momento em que esperava-se uma recuperação mais consistente dos investimentos. Pelo lado da oferta, o destaque foi o crescimento de 0,6% na margem dos serviços, que tem peso relevante no PIB.

A recuperação cíclica da economia brasileira ainda está longe de ganhar tração, como mostra o gráfico acima. Após a saída da Grande Recessão de 2014-2016, a economia tem tido dificuldades de deslanchar. Ao longo do período reformista, que começa em 2016, houve diversos choques sobre a economia, como o Joesley Day, a greve de caminhoneiros e a crise na Argentina. Esses choques se somam a mudança de liderança no crescimento, agora mais dependente da iniciativa privada do que do setor público.

Um zoom sobre o período recente mostra a dificuldade que a economia está tendo de experimentar taxas de crescimento mais fortes. Ao que parece, a economia se acomodou em um crescimento próximo a 1% ao ano, número bastante aquém das necessidades do país. Para um crescimento populacional de 0,8% a.a., significa dizer que o pib per capita está praticamente estagnado nesse período.

____________________

(*) As Contas Nacionais contam com script completo em nosso Curso de Análise de Conjuntura usando o R.

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente