modelo preditivo

Como resolver problemas de multicolinearidade em modelos preditivos?

O VIF é uma estatística útil para identificar multicolinearidade em regressões. Esse problema gera, dentre outros, erros padrões maiores, o que pode impactar os intervalos de confiança em modelos preditivos. Este Neste artigo, mostramos seu cálculo, a interpretação e uma aplicação em Python.

Qual o melhor modelo para prever a inflação medida pelo IPCA?

Neste exercício, testamos 18 modelos diferentes com um conjunto fixo de regressores para previsão da taxa de inflação, medida pelo IPCA. Implementamos o método da validação cruzada, visando obter resultados robustos para comparação de métricas de performance. Apresentamos os resultados gerais e desagregados por horizontes de previsão, além de automatizar todo o processo utilizando a linguagem Python.

Análise Macro antecipa em 3 meses os dados divulgados do IPCA de novembro

O IBGE divulgou recentemente os dados de inflação de novembro/2024. A previsão da Análise Macro era de um aumento do IPCA em 0,38% , com viés altista, enquanto que o indicador mostrou uma variação de 0,39%. Por sua vez, a previsão de mercado era de 0,20% de aumento na inflação, de acordo com o relatório Focus/BCB. A data da previsão considerada é 14 de novembro, ou seja, um mês antes da divulgação dos dados. Acesse o post e saiba mais!

Validação Cruzada em Modelos Preditivos: técnicas para dados ordenados e não ordenados

Como saber se o desempenho de um modelo preditivo se generaliza para dados desconhecidos? Dividir a tabela de dados em duas amostras, treinar o modelo e calcular o erro é um processo comum e bastante simples, mas pouco informativo. As técnicas de validação cruzada podem ajudar neste aspecto e neste artigo mostramos como funcionam e como implementar usando linguagem de programação.

Pré-processamento de dados: lidando com valores extremos e valores ausentes

No contexto de ciência de dados, é comum ter que lidar com problemas nos dados de um modelo preditivo, tais como valores extremos (outliers) ou valores ausentes (missing data). Em muitos casos, é preciso aplicar pré-processamentos para validar e utilizar um modelo, ao mesmo tempo que é necessário evitar o vazamento de dados (data leakage). Abordamos estes desafios neste artigo mostrando exemplos com dados reais em aplicações nas linguagens de programação R e Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.