modelo preditivo

Como saber se o desempenho de um modelo preditivo se generaliza para dados desconhecidos? Dividir a tabela de dados em duas amostras, treinar o modelo e calcular o erro é um processo comum e bastante simples, mas pouco informativo. As técnicas de validação cruzada podem ajudar neste aspecto e neste artigo mostramos como funcionam e como implementar usando linguagem de programação.
No contexto de ciência de dados, é comum ter que lidar com problemas nos dados de um modelo preditivo, tais como valores extremos (outliers) ou valores ausentes (missing data). Em muitos casos, é preciso aplicar pré-processamentos para validar e utilizar um modelo, ao mesmo tempo que é necessário evitar o vazamento de dados (data leakage). Abordamos estes desafios neste artigo mostrando exemplos com dados reais em aplicações nas linguagens de programação R e Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.