Tag

resultado primário Archives - Análise Macro

Comportamento das variáveis fiscais em 2020 e o que esperar de 2021

By | Indicadores

No último dia 29 de janeiro, o Banco Central divulgou as Estatísticas Fiscais referentes à dezembro de 2020. Com efeito, ficamos sabendo como se comportaram as principais variáveis fiscais ao longo de 2020, um ano repleto de desafios por conta da pandemia do coronavírus. Nesse Comentário Semanal do boletim Focus, nós trazemos uma edição especial focada em variáveis fiscais.

Para começar, como de praxe, nós carregamos os pacotes que utilizamos.


library(rbcb)
library(scales)
library(tidyverse)

A seguir, nós buscamos dois grupos de dados. Para começar, nós pegamos os dados referentes às variáveis efetivamente observadas. O código a seguir pega os dados diretamente do Sistema de Séries Temporais do Banco Central.


## Coleta de dados reais
series = list('DBGG' = 13762,
'DLSP' = 4513,
'NFSP Primário' = 5793,
'NFSP Nominal' = 5727)

data_variaveis = get_series(series, start_date = '2019-01-01') %>%
purrr::reduce(inner_join) %>%
gather(variavel, valor, -date)

A seguir, nós pegamos os dados referentes às expectativas contidas para essas variáveis dentro do boletim Focus.


## Coleta de dados de expectativas
data_expectativas = get_annual_market_expectations('Fiscal',
start_date = '2019-01-01')

data_expectativas$indic_detail = ifelse(data_expectativas$indic_detail == "Resultado Primário",
'Resultado Primário',
data_expectativas$indic_detail)

data_expectativas$indic_detail = ifelse(data_expectativas$indic_detail ==
unique(data_expectativas$indic_detail)[3],
'DLSP',
data_expectativas$indic_detail)

data_expectativas$indic_detail = ifelse(data_expectativas$indic_detail ==
unique(data_expectativas$indic_detail)[4],
'DBGG',
data_expectativas$indic_detail)

De posse dos dados, nós podemos olhar o que ocorreu com as variáveis observadas.

O ano de 2020 terminou com a Dívida Bruta muito próxima dos 90% do PIB (89,3%) e com a Dívida Líquida em 63%. Em dezembro de 2019, a DBGG estava em 74,3%, enquanto a DLSP estava em 54,6% do PIB. Isto é, houve um aumento de 15 pontos percentuais na DBGG ao longo de 2020.

A deterioração do fluxo explica a maior parte dessa evolução. As Necessidades de Financiamento do Setor Público (NFSP) saíram de 0,84% em dezembro de 2019 para 9,49% do PIB em dezembro de 2020, no seu corte primário, que não inclui gastos com juros. No seu corte nominal, que inclui gastos financeiros, houve uma variação de 7,91 pontos percentuais: de 5,79% para 13,7% do PIB.

Ao longo de 2021, diga-se, os agentes de mercado esperam uma certa estabilidade nas variáveis de estoque, enquanto para o fluxo, o resultado nominal esperado está em -6,59% do PIB e o primário em -2,72%.

 

____________________

(*) No nosso Curso de Análise de Conjuntura usando o R, nós estressamos a coleta e tratamento de dados fiscais com o R;

(**) O código de R desse artigo está disponível para os membros do novo Clube AM. Para saber mais, clique aqui.

O risco fiscal

By | Comentário de Conjuntura

O mercado se volta para o risco fiscal presente no aumento das necessidades de financiamento do setor público (fluxo) e, consequentemente, para o aumento do endividamento. Diante da forte reação de política pública, em particular pela criação e operacionalização do auxílio emergencial, houve, de fato, uma deterioração adicional nas contas públicas. Para dar uma olhada nos dados, como ensino no nosso Curso de Análise de Conjuntura usando o R, podemos começar carregando alguns pacotes no R, como abaixo.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)
library(GetTDData)
library(ecoseries)
library(RColorBrewer)
library(rbcb)

Carregados os pacotes, podemos começar pegando os dados de endividamento, como abaixo.


dlsp = get_series(4513)

ggplot(dlsp, aes(x=date, y=`4513`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Dívida Líquida do Setor Público',
caption='Fonte: analisemacro.com.br com dados do BCB')

dbgg = get_series(13762) %>%
drop_na()

ggplot(dbgg, aes(x=date, y=`13762`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Dívida Bruta do Govero Geral',
caption='Fonte: analisemacro.com.br com dados do BCB')

A Dívida Bruta do Governo Geral chegou a 88,8% em agosto e a Dívida Líquida fechou em 60,7%, como pode ser visto abaixo.


Essa deterioração nas métricas de endividamento, por óbvio, é resultado direto da piora do fluxo, isto é, das necessidades de financiamento do setor público. A seguir, ilustro.


primario = get_series(5793) %>%
drop_na()

ggplot(primario, aes(x=date, y=`5793`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Necessidades de Financiamento do Setor Público',
caption='Fonte: analisemacro.com.br com dados do BCB')

As contas públicas se tornaram uma bomba relógio prestes a explodir. E ainda não tiveram maior impacto sobre o risco-país e sobre o custo de captação do Tesouro porque o Teto de Gastos ainda se mantém de pé. Sem o teto, é questão de tempo para que o mercado precifique o default brasileiro. 

____________________

*) Para ter acesso aos códigos completos do exercício, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições abertas para as Turmas Especiais dos nossos Cursos de Macro Aplicada.

Reformas dos últimos anos permitem melhor enfrentamento ao coronavírus

By | Comentário de Conjuntura

A pandemia do coronavírus vai obrigar o estado brasileiro a gastar algo próximo ao que economizou com a reforma da previdência no ano passado. Se os números divulgados pelo atual ministro da economia em uma live com o pessoal da XP nesse final de semana estiverem corretos - o que eu particularmente tenho dúvidas. E, diga-se, deve mesmo gastar. Estamos lidando com um choque humanitário, onde a reação de política pública deve se concentrar em preservar as pessoas. Seja aumentando o gasto com saúde, seja ampliando de reforma rápida a rede de proteção social.

Proteger as pessoas, nesse momento, diga-se, é fazer um investimento no futuro. Preservar capital humano, permitindo que a retomada do organismo econômico seja o mais célere possível.

A calamidade pública imposta pela chegada do Covid-19 ao Brasil acionou as válvulas de escape da lei de responsabilidade fiscal e da emenda do teto de gastos. Isso liberou o estado brasileiro a fazer gastos extraordinários para tentar conter a pandemia no país.

O aumento do gasto no curto prazo, seja lá qual for a sua dimensão, será financiado via emissão de títulos. As pessoas físicas e jurídicas comprarão os títulos emitidos, liberando recursos para que o governo possa realizar os gastos necessários com saúde e proteção social.

A consequência disso será tanto o aumento da dívida pública quanto o aumento do seu custo e encurtamento do prazo. Isto é, a dívida vai ficar mais alta e mais difícil de ser paga. Isso implica que o ajuste fiscal no período t+k, onde k representa a quantidade de trimestres que levará para os efeitos da pandemia passar, deverá ser ainda maior do que o que vinha sendo implementado ao longo dos últimos três anos.

Para ilustrar esse ponto, vamos ver o que aconteceu com os yields de duas NTN-B, uma com vencimento em 2045 e outra com vencimento em 2024. Para isso, nós usamos o pacote GetTDData para coletar os dados, o pacote ggplot2 para visualização e outros pacotes da família tidyverse para tratamento.


library(GetTDData)
library(ggplot2)
library(dplyr)
library(magrittr)
library(scales)
library(gridExtra)

ntnb <- download.TD.data('NTN-B')
ntnb45 <- read.TD.files(dl.folder = 'TD Files',
maturity = '150545')

g1 = filter(ntnb45, ref.date > '2019-01-01') %>%
ggplot(aes(x=ref.date, y=yield.bid*100))+
geom_line()+
scale_x_date(breaks = date_breaks("2 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=10))+
labs(x='', y='% a.a.',
title='NTN-B 2045')

ntnb24 <- read.TD.files(dl.folder = 'TD Files',
maturity = '150824')

g2 = filter(ntnb24, ref.date > '2019-01-01') %>%
ggplot(aes(x=ref.date, y=yield.bid*100))+
geom_line()+
scale_x_date(breaks = date_breaks("2 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=10))+
labs(x='', y='% a.a.',
title='NTN-B 2024')

grid.arrange(g1, g2,
ncol=2, nrow=1)

Como é possível observar nos gráficos, houve um salto nos yields. Esse movimento fez com que o Tesouro entrasse comprador no mercado, sem data de saída, de modo a garantir a liquidez do sistema.

Um ponto importante aqui é que os juros associados aos títulos públicos estavam caindo antes da pandemia, refletindo a queda geral de juros que tivemos no país nos últimos anos. Houve uma queda do juro de equilíbrio da economia brasileira, refletindo em particular a emenda do teto de gastos, que garantiu maior solvência do setor público no médio/longo prazo. Sobre isso, inclusive, publicamos exercício no Clube do Código.

Em outras palavras, se ainda estivéssemos vivendo em um país sem teto de gastos e sem reforma da previdência, é provável que o "salto nos yields" fosse ainda maior, o que tornaria a tarefa de reagir à pandemia ainda mais complexa. No limite, o estado brasileiro teria que emitir moeda para fazer frente ao necessário aumento de gastos.

Feitas essas ressalvas, volto ao ponto da fragilidade fiscal. Mesmo com todas as medidas feitas até aqui, ainda estamos em um ponto bastante delicado. Para ilustrar, considere o nível de endividamento do setor público, com os dados do Banco Central coletados através do pacote BETS.


library(BETS)
library(tidyr)
dbgg = BETSget(13762, data.frame=TRUE)

drop_na(dbgg) %>%
ggplot(aes(x=date, y=value))+
geom_line()+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=10))+
labs(x='', y='% PIB',
title='Dívida Bruta do Governo Geral')

Observe que tivemos um aumento de dívida bastante pronunciado desde 2014. Somente na margem, com diversas medidas tomadas, como a devolução do valor emprestado ao BNDES, que a dívida bruta ensaiava sua redução. Nosso nível de endividamento é consideravelmente elevado, se comparado a países com mesma renda per capita.

Em termos de fluxo, por suposto, as coisas estavam melhorando, ainda que permanecesse a geração de déficit primário, quando o setor público não consegue gerar receitas o suficiente para pagar suas despesas essenciais.


primario = BETSget(5793, data.frame=TRUE)

drop_na(primario) %>%
ggplot(aes(x=date, y=-value))+
geom_line()+
geom_hline(yintercept=0, colour='red', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 year"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=10))+
labs(x='', y='% PIB',
title='Resultado Primário')

Em síntese, nosso quadro fiscal é muito pior do que às vésperas da crise de 2008. E a crise atual é muito mais severa do que a crise de 2008. Como já dito e insisto, o estado brasileiro deve fazer tudo o que for necessário para conter os efeitos da pandemia. Mas quando tudo passar, não se engane, estaremos desafiados à aumentar em muitos graus o esforço reformista. Sem ele, estaríamos ainda mais vulneráveis do que estamos hoje.

________________________

(*) Aprenda R nos nossos Cursos Aplicados de R.

(**) Um pdf com os códigos estará disponível amanhã no Clube do Código.


A dramática situação das contas públicas

By | Política Fiscal

Desde 2014, o Brasil tem convivido com déficit primário nas contas públicas. Isto é, as receitas de impostos e outras fontes não têm sido suficientes para pagar gastos primários (não financeiros) do governo. No acumulado em 12 meses até junho, por exemplo, o resultado primário ficou negativo em R$ 89,8 bilhões ou 1,34% do PIB. O resultado de sucessivos déficits primários foi a expansão da dívida bruta, que passou de 52,62% do PIB em janeiro de 2014 para 77,19% em junho desse ano. Abaixo um gráfico dessas duas variáveis ajuda a entender a deterioração das contas públicas.

Sem um ajuste fiscal sério das contas públicas, que transforme esse déficit primário em um superávit capaz de estabilizar a trajetória da dívida, caminharemos para uma situação de dominância fiscal em breve. No nosso Curso de Análise de Conjuntura usando o R, a propósito, ensinamos nossos alunos a lidar com variáveis fiscais por intermédio do uso do R. Assim, o aluno aprende a coletar e tratar essas variáveis sem necessidade de utilizar qualquer outro programa, como o Excel.

Comentário de Conjuntura: dados fiscais, desemprego e indústria

By | Comentário de Conjuntura

Na semana passada, o Banco Central e a Secretaria do Tesouro Nacional divulgaram os dados referentes ao resultado primário do governo central, as necessidades de financiamento do setor público e o estoque de endividamento público. Com efeito, aproveitamos para atualizar, no âmbito do Clube do Código, o Monitor Fiscal, que coleta os dados disponibilizados por essas fontes através do R, montando assim uma apresentação automática sobre a situação fiscal do país. Também na semana passada, a propósito, o IBGE divulgou os dados referentes à PNAD Contínua, sobre o trimestre móvel encerrado em fevereiro. A pesquisa também conta com script automático disponível no Clube do Código. Membros do Clube, como de hábito, têm acesso a todos os códigos de R e de LaTeX que foram utilizados para gerar as apresentações. A seguir, destacamos alguns aspectos dos resultados fiscais e do desemprego.

Os dados do desemprego referentes ao trimestre móvel terminado em fevereiro acompanharam a sazonalidade. Tipicamente, o desemprego brasileiro aumenta nos meses de janeiro, fevereiro e março, se reduzindo nos meses seguintes. O gráfico abaixo ilustra.

Com efeito, na passagem de janeiro para fevereiro, a taxa de desemprego passou de 12,2% para 12,6%. A boa notícia, porém, é que na passagem interanual, o desemprego continuou mostrando a tendência de queda que vem configurando sua trajetória nos últimos meses. O gráfico abaixo ilustra.

Maiores detalhes podem ser vistos nos slides da apresentação sobre a PNAD Contínua aqui. Já sobre os dados fiscais, o Monitor Fiscal preparado para os membros do Clube do Código possui 60 slides com informações sobre as contas do governo central, as necessidades de financiamento do setor público consolidado, além de dados sobre o estoque de endividamento. Como destaque, chama atenção a recuperação do resultado primário, após um longo inverno de deterioração. O gráfico abaixo ilustra.

Ao desagregarmos as receitas e despesas do governo central, a propósito, chama atenção o comportamento dos gastos com previdência. No gráfico abaixo, onde deflacionamos os dados, colocando os mesmos a preços de fevereiro de 2018, e acumulamos em 12 meses, é nítido o comportamento explosivo dos gastos com INSS.

O relatório destrincha o resultado primário do governo central, desagregando os dados tanto pelo lado da receita quanto pelo lado da despesa. São criadas métricas de avaliação, tais como comparações deflacionadas, em relação ao PIB, variações interanuais e da média móvel anual, de modo a cobrir toda a análise de dados fiscais. Ademais, também são vistos os dados agregados referentes ao setor público consolidado, no que se refere ao resultado primário, o gasto com juros e o déficit nominal. Chama atenção nesse aspecto o efeito da fatídica reunião de agosto de 2011 que daria início a uma guinada na política monetária brasileira, tendo importantes repercussões sobre a situação fiscal. O gráfico abaixo ilustra. O leitor pode conferir tudo isso e muito mais na apresentação completa do Monitor, disponível aqui. Caso queira ter acesso aos códigos de R da apresentação, basta assinar o Clube do Código.

Por fim, para essa primeira semana de abril, o destaque é a divulgação amanhã, 03/04, da Produção Industrial, pelo IBGE, também referente a fevereiro. A pesquisa também conta com script automático no âmbito do Clube do Código.

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente