série temporal

Imagine que você tenha uma “simples” tarefa: prever o futuro de uma variável econômica relevante, como a taxa de inflação do país. Existem diversas abordagens para cumprir esta missão, desde o uso de modelos preditivos econométricos, modelos de machine learning ou até mesmo modelos de inteligência artificial (IA). Qual caminho escolher? Qual abordagem é a melhor? Neste artigo tentamos dar uma resposta para estas perguntas, usando como exemplo o IPCA como variável de interesse.
A compreensão dos efeitos da sazonalidade em uma série econômica é essencial para uma análise de conjuntura. As flutuações do Índice de Preços ao Consumidor Amplo (IPCA) são moldadas por uma gama diversificada de fatores sazonais, que vão desde os padrões climáticos, passando por datas festivas e particularidades do mercado de produtos específicos, até aspectos metodológicos na coleta de dados de preços. Neste artigo, exploraremos os dados de variação mensal do IPCA, focalizando na compreensão dos aspectos sazonais através de representações gráficas. Todo o processo foi realizado utilizando a linguagem de programação Python.
Neste texto abordamos modelos da família ARIMA para finalidade de previsão de séries temporais. Mostramos as diferenças de cada modelo usando exemplos de dados econômicos do Brasil, com aplicações na linguagem Python.
Será que o El Niño impacta o preço do feijão com arroz no prato dos brasileiros? Para responder esta pergunta estimamos um modelo VAR(p) utilizando dados do Oceanic Niño Index (ONI) e investigamos a decomposição histórica dos choques estruturais.
Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.