Análise de Tendência de Mercado com IA usando Python
Você está analisando o mercado acionário e se concentrando nos preços de uma ação específica. Ao longo dos dias, percebe uma mudança na trajetória dos preços e deseja entender o que está acontecendo por meio de notícias. Como automatizar esse processo de forma eficiente usando IA? Neste exercício, mostramos como utilizar o Python para essa tarefa.
Análise de Sentimento de Mercado com IA usando Python
Ler notícias diárias sobre empresas e ações listadas na bolsa pode ser maçante e cansativo. Mas, e se houvesse uma maneira de simplificar todo esse processo? Mostraremos como a IA generativa pode ajudar a captar o sentimento de notícias sobre companhias, automatizando todo o processo com Python e Gemini.
Analisando o mercado acionário brasileiro com aprendizado não supervisionado no Python
Como identificar os fatores significativos que influenciam a variabilidade nos retornos de ações individuais? Como comparar esses fatores ao selecionar empresas de setores distintos? Neste artigo, aplicamos a Análise de Componentes Principais para examinar ações que compõem o índice bovespa, com o objetivo de identificar os fatores estatísticos relevantes. Usamos o Python como ferramenta para aplicar a análise.
Hiato do Produto do Brasil no Python
Uma medida extremamente importante para a avaliação econômica de um país é o Hiato do Produto. Neste post, realizamos uma comparação das diferentes formas de estimação dessa variável não observável utilizando o Python como ferramenta de análise de dados.
Como analisar a contribuição para a Volatilidade de uma carteira de ações usando Python
A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.