Regimes da Política Monetária Brasileira com Markov Switching no Python
Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.
Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.
Transfer Learning para Previsão de Séries Temporais com o Python

A aprendizagem por transferência (ou transfer learning) é a técnica de reutilizar um modelo previamente treinado em um novo problema. Esse conceito representa um grande avanço para a previsão de variáveis, especialmente aquelas organizadas ao longo do tempo, como séries temporais. Neste post, exploramos como usar transfer learning com Python para trabalhar com esse tipo de dado.
Como usar o Python para tratar e manipular dados financeiros
Este exercício tem como objetivo apresentar a biblioteca pytimetk para a manipulação de dados financeiros no Python. Utilizaremos como exemplo ações brasileiras, demonstrando como carregar, estruturar, manipular e visualizar esses dados.
Como usar o Python para tratar e manipular dados de Séries Temporais
Este exercício tem como objetivo apresentar a biblioteca pytimetk para a manipulação de dados em séries temporais no Python. Utilizaremos como exemplo os núcleos de inflação, demonstrando como carregar, estruturar, manipular e visualizar esses dados.