Automatizando Análises Econômicas com LangChain e LangGraph: Multi-Agentes com LLMs

A evolução das ferramentas baseadas em modelos de linguagem (LLMs) está transformando o modo como realizamos análises econômicas. Neste artigo, apresentamos como utilizar LangChain e LangGraph, duas das bibliotecas mais relevantes para a orquestração de fluxos complexos com agentes de IA, integrando-os com o Google Gemini. O foco será a construção de uma pipeline multi-agente para análise econômica utilizando dados reais do Brasil.
Como Construir Agentes com SmolAgents: exemplo prático para mercado financeiro

Apresentamos o framework SmolAgents para a criação de agentes com LLMs em Python, com foco em aplicações no mercado financeiro.
Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.
Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.
Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.