Boletim AM

A verdade está nos dados

Receba todo domingo à noite em seu e-mail nossa newsletter com exercícios reais de análise de dados econômicos e financeiros, envolvendo muito estatística, econometria, machine learning e inteligência artificial em R e Python. Tudo o que você precisa saber para estar antenado no mundo dos dados!

Veja os nossos exercícios mais recentes

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API’s ou localmente através do Python.

Como calcular retornos históricos de ações no Python?

Este artigo tem como objetivo fornecer uma visão abrangente sobre como calcular medidas de retorno histórico e risco no contexto de investimentos e ações, utilizando a linguagem de programação Python como ferramenta.

Como avaliar a relação de risco-retorno de ações no Python

Neste tutorial apresentamos o conceito de risco-retorno para a avaliação de ações, tomando como ferramenta de análise a linguagem Python.

O que são LLMs?

Anteriormente, aprendemos que cada Agente precisa de um Modelo de IA em seu núcleo, e que os LLMs são o tipo mais comum de modelos de IA para esse propósito. Agora, vamos aprender o que são LLMs e como eles impulsionam os Agentes. Esta seção oferece uma explicação técnica concisa sobre o uso de LLMs.

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Nowcasting do PIB usando a linguagem R

Mostramos como usar a linguagem de programação R para coletar e tratar dados e construir o Nowcasting do PIB Brasileiro.

Previsão de demanda com o Prophet usando Python

Apresentamos o modelo Prophet e mostramos um exemplo aplicado com dados para previsão de demanda usando Python.

Nowcasting do PIB: um modelo de fatores usando Python

Neste exercício, implementamos o Nowcasting utilizando Modelos de Fatores Dinâmicos (Dynamic Factor Models) em Python, com o objetivo de prever o PIB dos EUA com base nos dados dos conjuntos FRED-MD e FRED-QD.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp