Boletim AM

A verdade está nos dados

Receba toda terça-feira pela manhã em seu e-mail nossa newsletter com um compilado de exemplos reais de exercícios de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas. Aqui, você vê na prática como coletar, tratar, analisar e apresentar dados reais que você usa no seu dia a dia.

Veja os nossos exercícios mais recentes

Neste exercício, iremos utilizar a inteligência artificial no Python para analisar e sumarizar divulgações trimestrais de empresas. Focaremos no uso de ferramentas como Gemini e técnicas de processamento de linguagem natural para extrair informações de documentos PDF relacionados aos relatórios financeiros das empresas.
O exercício explora como prever os efeitos de mudanças nos preços de produtos utilizando o TimeGPT, uma ferramenta de previsão de séries temporais no Python. Usando elasticidade-preço, é possível medir a resposta da demanda a variações de preço. O exemplo prático utiliza dados de vendas de abacates nos EUA.
Com a biblioteca OpenBB é possível coletar e analisar milhares de informações com apenas 2 linhas de código de Python. Neste artigo mostramos um exemplo simples, para obter os dados do índice de volatilidade VIX.
O uso de IA pode aumentar muito a produtividade de quem escreve códigos de Python, seja na análise ou na ciência de dados. Neste artigo, mostramos como usar a IA do Google para agilizar a escrita de código através da interface do Colab.
O IBGE divulgou recentemente os dados de inflação de setembro/2024. A previsão da Análise Macro era de um aumento do IPCA em 0,39% no mês, com viés altista, enquanto que o indicador mostrou uma variação levemente superior, de 0,44%, puxado por despesas com habitação. Por sua vez, a previsão de mercado era de 0,51% de aumento na inflação, de acordo com o relatório Focus/BCB.
Neste exercício mostramos um exemplo integrando um modelo de IA generativa em uma dashboard de demonstrativos financeiros feita em Python com Shiny.
Neste exemplo mostramos o poder da IA, especificadamente o uso do TimeGPT para prever os valores da Curva de Carga Horária de Energia Elétrica disponibilizada pela ONS. Comparamos o resultado da previsão com um modelo ingênuo e LGBM. Para o exercício, foi usado a linguagem Python para coleta, tratamento e modelagem.
As condições climatológicas influenciam desde a safra de grãos até a decisão de um vendedor ambulante levar seu carrinho para a praia ou não. Por sua importância e impactos na economia do país, neste exercício mostramos como coletar e elaborar análises de dados sobre o clima usando o Python.
Neste artigo exploramos fontes públicas de dados sobre secas e queimadas no Brasil. Mostramos como acessar, coletar e preparar os dados para elaboração de análises. Usamos a linguagem Python para desenvolver uma rotina automatizada.
Neste post, vamos explorar como utilizar o modelo de linguagem Gemini do Google para analisar demonstrações contábeis anuais da Eletrobras e extrair informações relevantes para tomada de decisão. Através de um código Python, vamos importar os dados direto da CVM, conectar com o Gemini e gerar resumos sobre as contas das demonstrações e perspectivas futuras sobre as finanças da empresa.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp