Como identificar mensagens de erro na coleta de dados de sites públicos
Quem trabalha com dados reais e precisa coletar informações de forma online usando APIs e links, sabe que erros de requisição são comuns, principalmente com dados públicos. Neste artigo, damos algumas dicas de como entender estes erros e mostramos um jeito simples de evitar que o código de Python “quebre” nestas situacões.
As diferentes formas de avaliar o erro de um modelo de previsão
Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.
Como construir uma base de dados para gerar previsões para a inflação medida pelo IPCA
Neste exercício, apresentamos as principais fontes de dados públicos utilizadas na macroeconomia e desenvolvemos uma rotina para coletar, tratar e disponibilizar (ETL) as variáveis para uso em modelos preditivos.
Como extrair e apresentar dados de Pedidos de Recuperação Judicial com Python
Os pedidos de RJ podem ser um termômetro para a atividade econômica do país. Usando dados do Serasa e a linguagem Python, podemos avaliar, a nível de setor, se há mais empresas no Brasil em apuros ou não.
Como coletar dados de conjuntura do setor externo com Python
Toda e qualquer economia de mercado deve ter algum contato, menor ou maior, a depender de diversos fatores, com o resto do mundo. Convencionou-se, nesse contexto, a designar como setor externo a área da análise de conjuntura onde são compiladas e analisadas as transações comerciais e financeiras que são feitas entre residentes e não residentes de um determinado país. Neste artigo mostramos rotinas simples para analisar dados de taxa de câmbio e do balanço de pagamentos usando Python.