Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Modelo de previsão para grupos do IPCA

Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

Text mining dos comunicados do FOMC: prevendo mudanças na política

Como quantificar sentimentos e emoções a partir de comunicados de política monetária? Neste exercício utilizamos os statements do FOMC para construir um índice de sentimentos, o que permite comparar a "narrativa" com a prática da política monetária, ou seja, mudanças da taxa de juros. Também avaliamos se tal índice é útil em prever mudanças de política através do teste de causalidade de Granger.

Usando LLMs para prever a inflação (IPCA)

Como o surgimento de modelos de inteligência artificial, como os LLMs, estariam as profissões de economistas e cientistas de dados ameaçadas? Neste exercício, tentamos responder esta pergunta ao avaliar o potencial de LLMs em produzir previsões para a inflação no Brasil em diferentes períodos. Comparamos a qualidade das previsões do modelo Google PaLM com as previsões dos profissionais e instituições de mercado, disponibilizadas no relatório Focus do Banco Central.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp