Interpretação de resultados e tomada de decisão em modelos preditivos

Em ciência de dados, a interpretação de resultados é fundamental para alcançar os objetivos da modelagem preditiva. Mas como analisar os modelos? Olhar as métricas de erros é suficiente? O melhor modelo é o que tem a maior acurácia? É necessário escolher um modelo? Neste artigo discutimos sobre estas e outras considerações no processo de tomada de decisão de modelos preditivos.

Topic Modeling: sobre o que o COPOM está discutindo? Uma aplicação do modelo LDA

O que informações textuais podem revelar sobre a situação da economia? Como transformar palavras em estatísticas e obter insights? Há algo informativo nas entrelinhas das atas do COPOM? Como usar Machine Learning para interpretar os comunicados da autoridade monetária? Neste exercício, damos continuidade aos posts sobre Natural Language Processing (NLP) demonstrando a aplicação da técnica de topic modeling com as atas do COPOM.

Análise das Atas do COPOM com text mining

Mineração de textos é uma técnica interessante para obtenção de insights quantitativos através de dados textuais. Com a finalidade de demonstrar seu uso, neste artigo faremos uma breve e introdutória análise das atas do Comitê de Política Monetária - COPOM usando mineração de textos com o auxílio do pacote tidytext na linguagem R.

Validação Cruzada em Modelos Preditivos: técnicas para dados ordenados e não ordenados

Como saber se o desempenho de um modelo preditivo se generaliza para dados desconhecidos? Dividir a tabela de dados em duas amostras, treinar o modelo e calcular o erro é um processo comum e bastante simples, mas pouco informativo. As técnicas de validação cruzada podem ajudar neste aspecto e neste artigo mostramos como funcionam e como implementar usando linguagem de programação.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp