Interpretação de resultados e tomada de decisão em modelos preditivos

Em ciência de dados, a interpretação de resultados é fundamental para alcançar os objetivos da modelagem preditiva. Mas como analisar os modelos? Olhar as métricas de erros é suficiente? O melhor modelo é o que tem a maior acurácia? É necessário escolher um modelo? Neste artigo vamos discutir sobre estas e outras considerações no processo de tomada de decisão de modelos preditivos.

Para aprender mais e ter acesso a códigos confira o curso de Modelagem e Previsão usando Python ou comece do zero em análise de dados com a formação Do Zero à Análise de Dados com Python.

Revisitando o ciclo de análise de dados

ciclo de análise de dados é uma metodologia de trabalho para resolver problemas com soluções analíticas baseadas em dados. Ao todo, são 6 etapas a serem percorridas:

  1. Definir o problema e objetivos;
  2. Identificar e coletar os dados;
  3. Processar e analisar os dados;
  4. Desenvolver uma solução baseada em dados;
  5. Validar a solução;
  6. Interpretar resultados e tomar decisão.

A interpretação de resultados e a tomada de decisão é a última etapa do ciclo de análise de dados. Em outras palavras, a modelagem preditiva não acaba após calcular os erros do modelo para validar a solução.

Um modelo preditivo é uma solução baseada em dados dentro de um contexto, visando resolver problemas específicos e alcançar objetivos definidos. Isso significa que números sozinhos dificilmente podem levar a uma tomada de decisão assertiva. Para encerrar este ciclo de análise de dados é necessário considerar as etapas anteriores e, dentre elas, o contexto.

Neste espaço já tivemos oportunidades de caminhar por todas estas etapas anteriores, explorando o funcionamento e as nuances com exercícios práticos. Hoje vamos fazer o mesmo com a etapa final para encerrar o ciclo!

Quais são os resultados de modelos preditivos?

Modelos preditivos podem ter múltiplos resultados de interesse para serem analisados. Para qualquer tomada de decisão é necessário primeiro entender que tipo de informação pode ser retirada de cada resultado do modelo. A seguir descrevemos os principais resultados para a maioria das tarefas de modelagem preditiva:

  • Previsões: é um valor pontual resultante do modelo, expressando uma estimativa numérica ou uma classificação categórica sobre um determinado evento de interesse.Exemplo: “modelo prevê que a inflação encerre o ano em 5%” e “modelo classifica que o cliente é mau pagador de empréstimos”.
  • Intervalos de confiança: é uma faixa de valores resultante do modelo, expressando um intervalo sobre o qual o valor verdadeiro de um determinado evento de interesse pode se encontrar.Exemplo: “modelo prevê que a inflação encerre o ano entre 4,5% e 5,5%”
  • Probabilidades: é um valor pontual resultado do modelo, expressando o quão provável é a ocorrência de um determinado evento de interesse, entre 0 e 1.Exemplo: “modelo prevê que a probabilidade de a inflação encerrar o ano acima da meta é de 75%”.

Definir qual é o resultado de interesse em um modelo preditivo é importante para não se desviar do objetivo final. Imagine que, por exemplo, intervalos de confiança sejam fundamentais na previsão de eleições presidenciais. Por consequência, um modelo que entrega apenas previsões pontuais terá pouca utilidade.

Como avaliar os resultados de modelos preditivos?

Para cada resultado possível de um modelo, há métricas de desempenho correspondentes. Entender como calcular e interpretar as métricas é fundamental para tomar boas decisões. Em geral, o objetivo é quantificar o erro de um determinado modelo preditivo. A seguir listamos as principais métricas disponíveis.

Métricas de desempenho para tarefas de regressão:

  • ME
  • MAE
  • RMSE

Métricas de desempenho para tarefas de classificação:

  • Sensibilidade
  • Especificidade
  • Acurácia

Saiba mais sobre as fórmulas e o significado destas métricas através deste link.

Como interpretar o desempenho de modelos preditivos?

As métricas de desempenho servem para analisar quantitativamente o erro do modelo preditivo, mas podem ser enganosas. Um exemplo clássico é o caso de dados categóricos desbalanceados: modelos de classificação tendem a errar bastante as observações da classe minoritária, ao mesmo tempo que métricas, como a acurácia, reportarão “bons” números por influência das observações da classe majoritária. Nem sempre um alto valor de acurácia é desejável, especialmente se o evento de interesse é raro, como no exemplo.

Métodos de visualização gráfica podem trazer uma nova perspectiva na avaliação de modelos preditivos. Um simples gráfico de dispersão entre valores observados e valores previstos pode revelar padrões que podem ser difíceis de captar apenas usando tabelas numéricas de estatísticas e métricas. Imagine que você comparou 5 modelos preditivos para um variável numérica, medida em R$, e viu que o modelo B apresentou o menor erro, medido pelo RMSE. Em seguida você plotou os dados e viu que o modelo está errando na casa dos milhões de R$. Provavelmente este ainda não é o melhor modelo e por isso é importante visualizar os dados antes de tomar uma decisão final.

Em suma, é importante utilizar as métricas de desempenho e as visualizações gráficas para avaliar os resultados de modelos preditivos, mas sempre considerando o contexto do trabalho.

Tomada de decisão técnica

O objetivo da modelagem preditiva é encontrar uma solução analítica com o menor erro ou maior acurácia possível. Nesta busca, é comum desenvolver o trabalho utilizando um modelo simples para base de comparação e outros modelos, em graus variados de complexidade, para teste. Este esquema possibilita o rankeamento dos modelos de acordo com o menor erro ou maior acurácia, conforme uma métrica de desempenho de escolha.

A escolha técnica do modelo preditivo costuma ser o modelo que performou melhor na métrica de desempenho escolhida, mas isso não significa que a solução final precise ser apenas um modelo. É possível, e muitas vezes vantajoso, utilizar uma combinação de modelos. Em determinados casos, pode-se alcançar resultados melhores em relação a modelos individuais.

Nesta etapa é útil criar uma tabela rankeando modelos preditivos por métricas de desempenho, como no exemplo abaixo:

Suponha que em ambas as métricas, quanto mais próximo de zero mais acurado é o modelo. Neste caso, o modelo C está com uma performance ruim e os modelos A e B são os mais acurados. O modelo A é o melhor pela métrica 1 e o modelo B é o melhor pela métrica 2. Falta tomar a decisão final de qual modelo utilizar.Há dois principais caminhos para tomar a decisão técnica em torno de modelos preditivos:

  • Primeiro escolher a métrica e depois escolher o modelo, se houver clareza sobre a métrica, sua interpretação e objetivos;
  • Escolher n modelos e trabalhar com uma solução combinada, se não houver clareza sobre a métrica, sua interpretação e objetivos.

A escolha do caminho a ser percorrido vai depender, mais uma vez, do contexto da modelagem preditiva. Em geral, procura-se minimizar riscos e vieses que os modelos podem trazer. Frisa-se que há outros caminhos a considerar, mas que não discutiremos nesta oportunidade.

Tomada de decisão de negócios

A escolha de negócio do modelo preditivo tem o objetivo de maximizar lucro. Nem sempre, ou quase nunca, cientistas e analistas de dados consideram este objetivo no desenvolvimento do seu trabalho. E é por este motivo que pode acontecer de uma tomada de decisão de negócios se sobrepor a uma tomada de decisão técnica.

Acrescentando informações relevantes de negócios na tabela de rankeamento de modelos preditivos, poderíamos chegar no seguinte cenário:

Neste cenário, o modelo C é o menos acurado, mas é o modelo mais barato. Os demais modelos são mais acurados, mas mais custosos financeiramente. A depender do contexto, pode fazer mais sentido descartar os modelos A e B e implementar o modelo C.

Conclusão

Em ciência de dados, a interpretação de resultados é fundamental para alcançar os objetivos da modelagem preditiva. Mas como analisar os modelos? Olhar as métricas de erros é suficiente? O melhor modelo é o que tem a maior acurácia? É necessário escolher um modelo? Neste artigo discutimos sobre estas e outras considerações no processo de tomada de decisão de modelos preditivos.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Onde encontrar dados e ferramentas para text mining?

A aplicação das técnicas de mineração de texto pode trazer análises quantitativas informativas sobre a emoção, tom, categoria e outros padrões de interesse em documentos textuais. O primeiro passo é identificar, coletar e preparar estes dados brutos. Neste artigo, apresentamos bases de dados públicas de Economia e Finanças que podem ser exploradas, assim como ferramentas de programação úteis.

O que é mineração de textos e sua relação com IA?

Com uma matéria prima em comum, a mineração de textos e a inteligência artificial generativa usam grandes volumes de dados não estruturados para fins distintos e com aplicações em Economia, Finanças, Marketing e outras áreas. Mas quando devemos usar uma técnica e não a outra? O que é possível fazer e o que é mineração de textos? Neste artigo introduzimos estes tópicos e fornecemos alguns exemplos de aplicações.

Avaliando a evolução do Funcionalismo Público nos Estados Brasileiros usando Controle Sintético no R

O objetivo deste exercício é introduzir o uso do método de Controle Sintético na linguagem de programação R, aplicando-o a um exemplo prático relevante para a análise de políticas públicas. Vamos focar na utilização dessa técnica para avaliar o impacto do Regime de Recuperação Fiscal (RRF) sobre o número de vínculos do poder executivo nos estados brasileiros, com ênfase no caso do Rio de Janeiro.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.