Criando cenários para previsões no R
Previsão com julgamentos A previsão usando julgamentos é uma prática comum entre os profissionais que atuam na área de previsão. Em alguns casos é a única opção disponível. As principais aplicações da previsão com julgamentos são quando da falta de dados históricos, quando os dados estão incompletos ou quando as condições de mercado são totalmente […]
Restrição de previsões em intervalos no R
Como garantir que uma previsão pontual não ultrapasse um determinado limite? Por exemplo, se a variável de interesse para a previsão é "número de pessoas empregadas", sabemos que ou o valor da série é "zero pessoas empregadas" ou algum valor positivo. Pelo processo gerador dos dados, não faz sentido, neste caso, um modelo gerar previsões […]
Introdução à Econometria de Avaliação de Impacto
Correlação não implica causalidade: essa é uma afirmação bastante famosa em estatística e relativamente bem estabelecida atualmente. E essa distinção é fundamental para entender avaliação de impacto, caso contrário corre-se o risco de fazer análises espúrias. Se, porventura, você nunca ouviu essa frase, a charge abaixo é autoexplicativa sobre os dois conceitos: Assim fica fácil […]
Investigando quebras estruturais em séries temporais
Séries temporais são conjuntos de dados que são rotulados a cada ponto no tempo. Elas são usadas para entender e prever padrões e tendências ao longo do tempo em muitas áreas, como finanças, meteorologia e saúde pública. No entanto, às vezes as séries temporais podem ser afetadas por mudanças significativas que podem afetar a tendência […]
Ajuste sazonal no Python com o X13-ARIMA-SEATS
Um padrão sazonal ocorre quando uma série de tempo é afetada por fatores sazonais, como a época do ano ou o dia da semana. A sazonalidade é sempre de um período fixo e conhecido. Por exemplo, as vendas mensais de panetone apresentam sazonalidade induzida pela época de Natal de cada ano. Nestes casos, cálculos e […]