Como criar um Supervisor de Agentes com LangGraph
Este tutorial mostra como construir um supervisor multiagente usando LangGraph, integrando dois agentes especialistas: um focado em pesquisa na internet com Tavily e outro especializado em operações matemáticas. Para orquestrar esses agentes, utilizamos o modelo Gemini 2.0 da Google.
Como Criar um Agente SQL com LangGraph para Análise de Dados Financeiros de Empresas Brasileiras

Neste post, mostramos passo a passo como criar um agente SQL com LangGraph para consultar dados financeiros de empresas brasileiras da CVM. O processo inclui baixar e tratar os dados (ETL), configurar o banco SQLite, criar prompts e montar um grafo de estados para que o agente interprete perguntas em linguagem natural e gere consultas SQL.
Automatizando Análises Econômicas com LangChain e LangGraph: Multi-Agentes com LLMs
A evolução das ferramentas baseadas em modelos de linguagem (LLMs) está transformando o modo como realizamos análises econômicas. Neste artigo, apresentamos como utilizar LangChain e LangGraph, duas das bibliotecas mais relevantes para a orquestração de fluxos complexos com agentes de IA, integrando-os com o Google Gemini. O foco será a construção de uma pipeline multi-agente para análise econômica utilizando dados reais do Brasil.
Como Construir Agentes com SmolAgents: exemplo prático para mercado financeiro
Apresentamos o framework SmolAgents para a criação de agentes com LLMs em Python, com foco em aplicações no mercado financeiro.
Como usar automação com Python e IA na análise de ações
No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.