Previsão do CPI usando text mining nos comunicados do FOMC
Se textos pudessem falar, o que eles diriam? O uso de dados textuais é capaz de melhorar um modelo de previsão? Neste exercício exploramos o uso de fatores textuais extraídos dos comunicados do FOMC para a previsão da inflação norte-americana.
Interpretação de resultados e tomada de decisão em modelos preditivos
Em ciência de dados, a interpretação de resultados é fundamental para alcançar os objetivos da modelagem preditiva. Mas como analisar os modelos? Olhar as métricas de erros é suficiente? O melhor modelo é o que tem a maior acurácia? É necessário escolher um modelo? Neste artigo discutimos sobre estas e outras considerações no processo de tomada de decisão de modelos preditivos.
Topic Modeling: sobre o que o COPOM está discutindo? Uma aplicação do modelo LDA
O que informações textuais podem revelar sobre a situação da economia? Como transformar palavras em estatísticas e obter insights? Há algo informativo nas entrelinhas das atas do COPOM? Como usar Machine Learning para interpretar os comunicados da autoridade monetária? Neste exercício, damos continuidade aos posts sobre Natural Language Processing (NLP) demonstrando a aplicação da técnica de topic modeling com as atas do COPOM.
Aumentando o desempenho de modelos preditivos com técnicas de Bootstrapping, Bagging, Boosting e Random Forests
Neste artigo exploramos as técnicas de Bootstrapping, Bagging, Boosting e Random Forests com o objetivo de aumentar o desempenho em modelos preditivos. Percorremos o modo de funcionamento de cada técnica e sua aplicação usando linguagem de programação com dados econômicos do Brasil.
Análise das Atas do COPOM com text mining
Mineração de textos é uma técnica interessante para obtenção de insights quantitativos através de dados textuais. Com a finalidade de demonstrar seu uso, neste artigo faremos uma breve e introdutória análise das atas do Comitê de Política Monetária - COPOM usando mineração de textos com o auxílio do pacote tidytext na linguagem R.