Controle Sintético: Lei Anti Fumo na Califórnia

O que é Controle Sintético e como podemos utilizar essa ferramenta para auxiliar no estudo da avaliação de impacto? Neste post, oferecemos uma breve introdução a esse importante método da área de inferência causal, acompanhado de um estudo de caso para uma compreensão mais aprofundada de sua aplicação. Os resultados foram obtidos por meio da implementação em Python, como parte integrante do nosso curso sobre Avaliação de Políticas Públicas utilizando esta linguagem de programação.

Apreçamento de Opções via IA

O aprendizado de máquina (ML) é visto como parte da inteligência artificial. Algoritmos de ML constroem um modelo com base em dados de treinamento para fazer previsões ou decisões sem serem explicitamente programados para fazê-lo. Neste exercício, usamos o Python para aplicar modelos de ML conhecidos como random forests e neural networks a uma aplicação simples na precificação de opções: o treinamento dos modelos para aprender a precificar opções de compra sem conhecimento prévio dos fundamentos teóricos da famosa equação de precificação de opções de Black e Scholes (1973).

TimeGPT e a previsão automática usando IA no Python

Historicamente, métodos estatísticos como ARIMA, ETS, MSTL, Theta e CES têm sido confiavelmente empregados em diversos domínios. Na última década, modelos de aprendizado de máquina como XGBoost e LightGBM ganharam popularidade. Agora, podemos entrar em uma nova fase na era da previsão: o uso da IA Generativa para a previsão de séries temporais. Neste exercício, demonstramos de forma introdutória o TimeGPT e criamos um exemplo usando o IPCA.

Estudo de Caso: Impacto na redução do ICMS

Como podemos avaliar o efeito de uma intervenção política ao longo do tempo? O método diferenças-em-diferenças surge como uma poderosa ferramenta para realizar essa análise em dados observacionais. Neste exercício, exploramos como aplicar esse método para avaliar o impacto da redução do ICMS usando Python. Através deste exemplo simples, demonstraremos como investigar o efeito causal de uma intervenção ao longo do tempo e visualizar seus resultados de forma clara.

Previsão de retornos de ações com IA usando Python

Neste exercício, nosso objetivo é utilizar fatores de investimento como preditores para o retorno de uma ação, combinando-os com o uso da Regressão de Lasso para ajustar uma série de fatores de risco no Python. Este método nos permite explorar como diferentes variáveis influenciam os retornos das ações e como a Regressão de Lasso pode nos ajudar a selecionar os fatores mais relevantes, contribuindo para uma análise mais precisa. Todo o exercício é construído usando o Python como ferramenta.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp