Modelos ARIMA com o Python

Modelos univariados são bastante utilizados para fins de modelagem e previsão de um amplo conjunto de variáveis. Nesse post, vamos ilustrar a aplicação desses modelos sobre a inflação brasileira medida pelo IPCA utilizando modelos do tipo ARIMA

Criando um Modelo AutoArima no Python

Para criar uma previsão do IPCA usando o Python, devemos proceder através do processo de Análise de Dados, seguindo os seguintes passos:

  • Coleta do IPCA: utilizaremos a biblioteca python-bcb para retirar os dados do IPCA mensal direto do SGS, por meio do código 433;
  • Tratamento e Data Wrangling: Para fins de criação e utilização da biblioteca statsforecast devemos formatar os dados em uma forma ideal, bem como realizar a separação de dados de treino e teste;
  • Análise exploratória: Averiguar por meio de estatísticas descritivas e gráficos o comportamento do IPCA;
  • Modelagem e Previsão: criação do modelo e previsão.

Começamos com o processo de coleta dos dados e tratamento dos dados do IPCA, como demonstrado no código abaixo:


# Coleta do IPCA
ipca_raw = sgs.get(('y', 433), start = '2004-01-01')
# Tratamento do IPCA
ipca = (
    ipca_raw
    .reset_index()
    .assign(unique_id = 'ipca')
    .rename(columns = {'Date' : 'ds' })
)

O objetivo portanto, a partir da coleta e tratamento dos dados, será o de separar a amostra da série do IPCA mensal em teste e treino, utilizar a biblioteca statsforecast para rodar um AutoArima nos dados de testes.

Para entender todo o processo listado acima, com os códigos e video-aula, faça parte do Clube AM, o repositório de código da Análise Macro, contendo exercícios semanais de R e Python.

Vemos o resultado da previsão do AutoArima comparado com os dados de teste:

________________________________________________

Quer se aprofundar no assunto?

Alunos da trilha de Ciência de dados para Economia e Finanças podem aprender a como construir projetos que envolvem dados reais usando modelos econométricos e de Machine Learning com o R.

Referências
Hyndman, R.J., & Athanasopoulos, G. (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.