Aplicação de PCA em finanças usando o R

A análise de componentes principais ou Principal component analysis, consiste em uma técnica popular que visa reduzir a dimensionalidade de um conjunto de variáveis. No post de hoje, iremos realizar uma aplicação da técnica em finanças utilizando o R.

O objetivo do uso da análise de componentes principais consiste em reduzir um número significante de variáveis que explicam uma variável resposta, de forma a encontrar a variabilidade em torno de cada variável latente, isto é, uma variável "oculta" que explica a variável resposta.

A partir disso é possível compreender quais as variáveis latentes, isto é, quantos fatores de risco representam a variabilidade de um conjunto de ações ou índices de investimentos.

Vejamos a aplicação utilizando o R. Selecionamos 6 ações, 3 compreendendo o setor de tecnologia e 3 o setor de financeiro. Ao aplicar o PCA, vemos o primeiro componente principal explica 54,19% da variabilidade dos retornos. Pelo gráfico abaixo, fica fácil de perceber que o PCA1 é apenas uma proxy do risco de mercado.

A construção de todos os procedimentos para a criação dos gráficos abaixo você pode obter fazendo parte do Clube AM, o repositório especial de códigos da Análise Macro.

 

Além disso, fica fácil perceber a relação dos fatores entre os ativos. Isso pode permitir o avanço na construção de uma carteira diversificada.

_____________________________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Resultado PNADc Trimestral - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PNADc Trimestral do 3º trimestre de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.