Lei de Okun: qual a relação entre crescimento econômico e desemprego?

A Lei de Okun é uma relação empírica que busca quantificar a relação entre a taxa de desemprego e a taxa de crescimento econômico. Ela foi proposta pelo economista Arthur Okun na década de 1960 e está presente em diversos livros textos de graduação. Buscamos através deste artigo investigar duas formas da Lei de Okun, descrevendo-a utilizando dados do Brasil. Usamos o Python para realizar todo o processo de análise de dados.

Relações empíricas relacionadas ao desemprego têm fascinado os economistas por muito tempo. Por exemplo, a curva de Phillips começou como uma simples observação de trade-off entre desemprego e inflação. No entanto, à medida que a teoria se alinhou com as evidências, a curva de Phillips emergiu como a relação mais importante na maneira como os economistas enxergam o lado da oferta da economia e está incorporada em todos os principais modelos macroeconômicos que orientam as políticas atualmente.

Outra relação de interesse para os economistas é aquela entre produção e desemprego. Em 1962, Arthur Okun observou duas relações empíricas:

  • as mudanças trimestrais na taxa de desemprego estavam relacionadas ao crescimento trimestral do produto interno bruto (PIB) real
  • desvios na taxa de desemprego estavam relacionados aos desvios do PIB em relação ao seu potencial (isto é, o Hiato do Produto)

Essas relações ficaram conhecidas como as versões differences e gaps da Lei de Okun, respectivamente.

A Lei de Okun é considerada uma relação estatística em vez de uma característica estrutural da economia, uma vez que tornou-se instável a sua aplicação. Isso corrobora como qualquer tipo de relação estatística, que pode estar sujeita a rupturas estruturais ou mudanças de regime. Por exemplo, mudanças estruturais no mercado de trabalho que levam a alterações na taxa de desemprego não aceleradora de inflação (NAIRU) são consideradas capazes de modificar o nível de equilíbrio do desemprego e alterar o trade-off entre inflação e produção. Embora esses choques do lado da oferta estejam cada vez mais integrados à teoria econômica, as rupturas estruturais na relação entre produção e desemprego limitaram o uso da Lei de Okun como uma regra de previsão.

Embora esses problemas tenham diminuido a confiança no uso da Lei de Okun, ainda podemos utiliza-la como uma regra de bolso simples e prática. Portanto, vamos aplicar tanto o método differences quanto o gaps.

Para dados do desemprego utilizaremos a Taxa de Desocupação medida pela PNADc ampliada e dessazonalizada, criada pelo exercício “Ampliando a série da PNADc”da Análise Macro. A importância de uma série ampliada permite que tenhamos uma amostra de tamanho suficiente, visto que utilizaremos dados trimestrais e a série da PNADc tem início em 2012.

Para dados de crescimento, utilizaremos Taxa de Variação T/T-1 do PIB a preços de mercado ajustado sazonalmente. E para o Hiato do Produto, capturamos os dados produzidos pelo Banco Central do Brasil, obtido através do Relatório de Inflação.

Lei de Okun: differences

A versão differences da Lei de Okun busca relacionar a variação da Taxa de de desemprego T/T-1 contemporaneamente com a variação da Taxa de Crescimento do PIB T/T-1.

\Delta U_t = \alpha \cdot \beta (\Delta Y_t)

Onde:
- \Delta U_t é a mudança na taxa de desemprego no período t contra t-1,

- \Delta Y_t é a mudança no PIB real no período t contra t-1,

- \beta é o coeficiente de Okun, que representa a sensibilidade da taxa de desemprego às mudanças no PIB. É esperado que seja negativo, para representar a relação inversa

- \alpha é o termo constante, valor para quando há 0% de variação na taxa de crescimento.

O gráfico de dispersão abaixo confirma que há de fato uma relação inversa para os dados selecionados.

Os resultados da regressão linear confirmam que a relação entre as duas variáveis é negativa e significativa. O coeficiente de regressão (\beta = -0.0101) é o coeficiente de Okun, e significa que uma variação de 1% na Taxa de Crescimento, ocasiona, em média, uma variação de -0.0101% na Taxa de Desemprego.

A razão -\alpha/\beta fornece a taxa de crescimento do produto consistente com uma taxa de desemprego estável, ou seja, quão rápido a economia precisaria crescer tipicamente para manter a taxa de desemprego existente. Neste caso, -\alpha / \beta = 0.0002/-0.0101 = 0.0205.

Código
                              OLS Estimation Summary                             
=================================================================================
Dep. Variable:     pnad_ampliada_sa_diff   R-squared:                      0.1450
Estimator:                           OLS   Adj. R-squared:                 0.1339
No. Observations:                     79   F-statistic:                    13.402
Date:                   Fri, Dec 08 2023   P-value (F-stat)                0.0003
Time:                           11:41:26   Distribution:                  chi2(1)
Cov. Estimator:               unadjusted                                         
                                                                                 
                             Parameter Estimates                              
==============================================================================
            Parameter  Std. Err.     T-stat    P-value    Lower CI    Upper CI
------------------------------------------------------------------------------
Intercept      0.0002     0.0053     0.0390     0.9689     -0.0102      0.0106
pib_marg      -0.0101     0.0027    -3.6609     0.0003     -0.0155     -0.0047
==============================================================================
Código

0.02050036209582354

Isso significa que seria necessário um crescimento de 0.0205% a cada trimestre para que a taxa de desemprego permaneça constante, aproximando-se de sua média de longo prazo.

Lei de Okun: output gap

Esta versão da lei relaciona as mudanças na taxa de desemprego ao hiato entre a produção real e a produção potencial ou tendencial. Portanto, se a produção cair abaixo do potencial, abrindo um hiato negativo, espera-se que o desemprego aumente. Vice-versa, quando a produção real está acima da tendência ou potencial e surge um hiato positivo, espera-se que o desemprego diminua. Semelhante à versão differences, isso enfatiza a importância do ciclo econômico na determinação das mudanças no desemprego.

No entanto, não há uma definição universal do que constitui a produção ‘tendencial’ ou ‘potencial’, mas geralmente se pensa como sendo o nível de produção uma vez que medidas cíclicas e idiossincráticas foram removidas. Nesse sentido, é um nível de equilíbrio de produção no qual a economia pode crescer sem experimentar pressões inflacionárias ou deflacionárias. Outra maneira de expressar isso é definir a produção tendencial como o nível de produção consistente com o desemprego estando em sua NAIRU. Quando a produção ultrapassa a tendência, o desemprego cai abaixo de sua NAIRU e vice-versa.

    \[U_t - U_{t}^{*} = \beta \cdot (Y_t - Y_{t}^{*})\]

Onde:

- U_t é a taxa de desemprego no período t,

- U_{t}^{*} é a taxa de desemprego no estado estacionário (ou NAIRU) no período t,

- Y_t é o PIB real no período t,

- Y_{t}^{*} é o PIB potencial no período t,

- \beta é um coeficiente que representa a sensibilidade da taxa de desemprego aos desvios do PIB em relação ao seu potencial.

O problema nesta versão se concentra na impossibilidade de observar diretamente o produto potencial e a NAIRU, sendo necessário estimativas dessas medidas, o que pode tornar os valores da relação diferentes para cada diferentes método empregado para realizar a estimação.

Para o caso do Hiato, utilizaremos os dados disponibilizados pelo BCB, que estima o produto potencial através de uma função de produção. Para a NAIRU, utilizaremos o filtro hp, que permite remover oscilações, suavizando inovações de curto prazo (cíclicas e idiossincráticas).

Através do gráfico de dispersão abaixo, podemos confirmar que há a relação inversa contemporânea, proposta pela Lei de Okun. Esta evidência é corroborada ao analisarmos o hiato do desemprego e do produto ao longo do tempo.

A relação estimada através de uma regressão linear, aliás, é muito mais forte do aquela encontrada pela versão de diferenças, exibindo um coeficiente de valor mais alto, e R² maior.

Código
                            OLS Estimation Summary                            
==============================================================================
Dep. Variable:                  u_gap   R-squared:                      0.3068
Estimator:                        OLS   Adj. R-squared:                 0.2979
No. Observations:                  79   F-statistic:                    34.961
Date:                Fri, Dec 08 2023   P-value (F-stat)                0.0000
Time:                        11:41:28   Distribution:                  chi2(1)
Cov. Estimator:            unadjusted                                         
                                                                              
                             Parameter Estimates                              
==============================================================================
            Parameter  Std. Err.     T-stat    P-value    Lower CI    Upper CI
------------------------------------------------------------------------------
hiato         -0.2934     0.0496    -5.9128     0.0000     -0.3907     -0.1961
==============================================================================

Considerações

Por mais que a Lei de Okun tenha seus defeitos, ainda pode servir de regra de bolso para o caso brasileiro, permitindo tornar as análises da relação do desemprego e do produto mais críveis.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Como usar modelos do Sklearn para previsão? Uma introdução ao Skforecast

Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.