A inteligência artificial generativa (IA Generativa) permite criar soluções que automatizam grande parte dos processos manuais de diversas profissões. Na economia, finanças e análise de dados não é diferente. Desde a coleta de dados, passando pela análise e apresentação, podemos usar IA Generativa para economizar tempo e ganhar produtividade.
Neste artigo, mostramos como criar um AI Assistant, que é um “funcionário-robô” encarregado de ler e analisar os resultados financeiros de empresas brasileiras. A ideia é automatizar o processo de coleta, tratamento, análise e apresentação de dados que comumente agentes do mercado financeiro fazem com as diferentes empresas do mercado a cada trimestre. O assistente realiza estes procedimentos automaticamente e fornece uma análise completa sobre o comunicado da
Este AI Assistant trabalha dentro de uma dashboard Shiny, para facilitar a experiência e acesso do usuário final. A seguir mostramos o passo a passo do desenvolvimento.
Passo 01: bibliotecas
Iniciamos definindo as bibliotecas utilizadas no projeto:
requests
para baixar o pdf do site da empresa de interesseshiny
eshinywidgets
para desenvolver a dashboardgoogle.generativeai
para analisar o resultado da empresaplotly
para visualizar dados
Passo 02: modelo LLM
Em seguida, definimos o modelo de IA generativa a ser utilizado para a análise do relatório. Neste caso, utilizamos um modelo popular e acessível, o Gemini.
Obs: é necessário apontar uma chave de API para uso do modelo.
Passo 03: interface da dashboard
Agora avançamos para a interface visual da dashboard, definindo um campo de input para o usuário colocar o link do comunicado do resultado da empresa que se deseja analisar e os outputs para as análises geradas pelo modelo de IA generativa.
Passo 04: coleta de dados e prompt
Por fim, definimos uma função reativa que processa o link informado pelo usuário, coleta o pdf diretamente do site da empresa, cria um prompt otimizado para o modelo de IA generativa, envia os dados para a API do Google e recebe a resposta.
O resultado final é a dashboard exposta na imagem acima. Como próximos passos, o app pode ser publicado (deploy) em algum serviço, como o Shinyapps.io.
Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!
Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, fale com a gente no Whatsapp e veja como fazer parte do Clube AM, clicando aqui.