Estudo de Caso: Impacto na redução do ICMS

Introdução

O método ideal para avaliação de políticas (e de qualquer aferição de causalidade) é o experimento do tipo RCT (estudo randomizado controlado).

A ideia básica é atribuir aleatoriamente os indivíduos a dois grupos diferentes, um que recebe o tratamento (o grupo de tratamento) e outro que não (o grupo de controle) e comparar os resultados de ambos os grupos para obter uma estimativa da média do efeito de tratamento.

O problema é que RCT são frequentemente difíceis ou mesmo impossíveis de implementar.

No entanto, muitas vezes temos apenas dados observacionais, aqueles que não podemos definir quem será exposto a um tratamento.

Neste caso, o esforço passa sempre por mostrar que o grupo de controle é adequado para representar os resultados potenciais dos indivíduos tratados, caso estes não tivessem sido tratados.

Diferenças-em-Diferenças

Diferenças-em-Diferenças (diff-in-diff) é um modelo simples e eficaz que nos permite olhar para o efeito causal de uma intervenção política em dados observacionais.

Para isso, observamos como a média da variável de interesse se comporta antes e depois do tratamento, comparando com o grupo de controle no mesmo período.

A equação básica do Diff in Diff pode ser representada da seguinte forma:

    \[Y_{it} = \alpha + \beta_1 \text{(Tratamento)}_i + \beta_2 \text{(Pós-Tratamento)}_t + \beta_3 \text{(Tratamento)}_i \times \text{(Pós-Tratamento)}_t + \text{Controles } + \epsilon_{it}\]

Onde:
- Y_{it} é a variável de interesse para a unidade i no período de tempo t.
- \alpha é uma constante.
- \beta_1 é o efeito médio do tratamento.
- \beta_2 é o efeito médio do tempo após o tratamento.
- \beta_3 é o efeito da interação entre tratamento e tempo após o tratamento.
- \text{(Tratamento)}_i é uma variável indicadora que é 1 se a unidade i pertence ao grupo de tratamento e 0 caso contrário.
- \text{(Pós-Tratamento)}_t é uma variável indicadora que é 1 se o período de tempo t é após a implementação do tratamento e 0 caso contrário.

- \text{Controles}  refere-se às variáveis de controles que garantem a independência condicional do modelo.
- \epsilon_{it} é o termo de erro.

A interpretação do coeficiente \beta_3 é o efeito causal do tratamento sobre a variável de interesse ao longo do tempo após o tratamento, controlando os efeitos fixos do tempo e do tratamento.

Tendências Paralelas

A premissa de tendências paralelas é a mais crítica das hipóteses para garantir a validade interna dos modelos diff-in-diff e é a mais difícil de cumprir.

Exige que, na ausência de tratamento, a diferença entre o grupo tratamento e controle seja constante ao longo do tempo. Ou seja, de que a mudança nos resultados de pré para pós-intervenção no grupo de controle é um bom contrafactual para os resultados potenciais não tratados no grupo de tratamento.

Esta é uma suposição, ou seja, não é algo que possamos testar, porque envolve resultados contrafactuais não observados.

Estudo de Caso: Impacto na redução do ICMS

Porto União (SC) e União da Vitória são chamadas cidades irmãs, pois são divididas apenas pelo limite entre os estados de Santa Catarina e Paraná, o que as torna um município apenas. Entretanto, cada uma tem a própria gestão municipal e, obviamente, segue as políticas do próprio estado.

Quer saber como essa análise foi construída? Seja aluno do nosso curso Avaliação de Políticas Públicas usando Python, e tenha acesso às aulas teóricas e práticas, com o código disponibilizado em Python.

Assim, suponha que em 2015 o estado do Paraná, com o objetivo de melhorar o dinamismo econômico, reduza a alíquota do Imposto sobre Circulação de Mercadorias e Serviços (ICMS). Ou seja, supondo a ausência de spillovers, a política afeta empresas da cidade paranense, mas não da catarinense.

Para avaliarmos o impacto dessa política, dispomos de dados do período de 2010 a 2020 com o lucro anual (em milhares de reais) de várias empresas nos dois municípios. Assim, podemos ver o efeito da alteração da alíquota a partir de 2015.

Como temos uma boa série de tempo antes do tratamento ocorrer, é ideal mostrar as tendências como forma de averiguar a plausabilidade da hipótese de tendências comuns entre os dois grupos. Para isso, calculamos a média por grupo e ano e colocamos em um gráfico.

Como as tendências antes do tratamento são paralelas, temos um bom argumento para validar a hipótese. Com isso, podemos estimar o impacto da política com uma regressão. Dado que nós temos mais de dois períodos, temos que estimar com uma variável binária em relação ao ano.

==================================================================================
                     coef    std err          t      P>|t|      [0.025      0.975]
----------------------------------------------------------------------------------
Intercept          9.6760      0.835     11.589      0.000       8.039      11.313
C(ano)[T.2011]     5.2171      1.089      4.792      0.000       3.083       7.351
C(ano)[T.2012]    -4.7696      1.086     -4.391      0.000      -6.899      -2.640
C(ano)[T.2013]    10.1788      1.114      9.138      0.000       7.995      12.362
C(ano)[T.2014]   -10.3444      1.089     -9.496      0.000     -12.480      -8.209
C(ano)[T.2015] -3.172e+13   3.18e+13     -0.999      0.318    -9.4e+13    3.06e+13
C(ano)[T.2016] -3.172e+13   3.18e+13     -0.999      0.318    -9.4e+13    3.06e+13
C(ano)[T.2017] -3.172e+13   3.18e+13     -0.999      0.318    -9.4e+13    3.06e+13
C(ano)[T.2018] -3.172e+13   3.18e+13     -0.999      0.318    -9.4e+13    3.06e+13
C(ano)[T.2019] -3.172e+13   3.18e+13     -0.999      0.318    -9.4e+13    3.06e+13
C(ano)[T.2020] -3.172e+13   3.18e+13     -0.999      0.318    -9.4e+13    3.06e+13
tratamento        -9.3808      0.686    -13.673      0.000     -10.726      -8.036
pos             3.172e+13   3.18e+13      0.999      0.318   -3.06e+13     9.4e+13
tratamento:pos    22.7081      0.929     24.446      0.000      20.887      24.529
==================================================================================

Nosso parâmetro de interesse é o “tratamento:pos”. Portanto, podemos ver que a diminuição da alíquota de ICMS aumentou o lucro das empresas de União da Vitória em 22 mil reais.

Considerações

O Método de Diferenças-em-Diferenças pode ser um grande aliado na necessidade de estimar o efeito causal de uma intervenção política em dados observacionais. Obviamente, devemos tratar de problemas comuns na avaliação ao empregar o método, como por exemplo, problemas de associação, variáveis de confusão e desbalanceamento de grupos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.