Controle Sintético
- O grupo de controle seja similar ao grupo de tratamento
- Exista um número relevante de observações em cada grupo
No entanto, é possível fazer inferência causal se tivermos apenas um caso tratado e alguns casos de controle, ou de maneira ainda mais extrema, se não houver casos de controle com covariáveis semelhantes ao caso tratado.
Parece até uma negação do que se conhece de resultados potenciais. Entretanto, esse tipo de situação pode ser frequente, principalmente quando vamos avaliar políticas em níveis muito agregados, como estados ou países. Normalmente, nesses casos, há apenas um indivíduo tratado. Para esse tipo de problema, o controle sintético pode ser uma boa solução.
Criamos esses valores contrafactuais da variável de interesse sinteticamente ponderando os valores das unidades de outros grupos de controles. A possibilidade aqui é que a combinação dos valores desses grupos de controles pode aproximar melhor as características do grupo tratado do que qualquer não unidade não tratada sozinha.
Estudo de Caso: Lei anti fumo na Califórnia
Quer saber como essa análise foi construída? Seja aluno do nosso curso Avaliação de Políticas Públicas usando Python, e tenha acesso às aulas teóricas e práticas, com o código disponibilizado em Python.
Na figura abaixo temos os dados de venda de pacotes de cigarros em 39 estados. Podemos verificar a série representada pela California em vermelho. De fato, caso quiséssemos avaliar o efeito da política após a sua implementação no estado (marcado pela linha vertical) teríamos dificuldades na comparação, afinal, não saberíamos de fato se a queda foi provocada (ou pelo menos sua magnitude) pela Lei Anti Fumo.