Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API’s ou localmente através do Python.
Anteriormente, aprendemos que cada Agente precisa de um Modelo de IA em seu núcleo, e que os LLMs são o tipo mais comum de modelos de IA para esse propósito.
Agora, vamos aprender o que são LLMs e como eles impulsionam os Agentes. Esta seção oferece uma explicação técnica concisa sobre o uso de LLMs.
O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.
Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.