Usando o Google Trends com o R

No mês de dezembro, iremos lançar uma nova versão do Clube do Código. O projeto de compartilhamento de códigos da Análise Macro vai avançar para uma versão 2.0, que incluirá a existência de uma comunidade no Telegram/Whatsapp, de modo a reunir os membros do Novo Clube, compartilhando com eles todos os códigos dos nossos posts feitos aqui no Blog, exercícios de análise de dados de maior fôlego, bem como tirar dúvidas sobre todos os nossos projetos e Cursos Aplicados de R.

Para ilustrar o que vamos compartilhar lá nesse novo ambiente, vou publicar aqui nos próximos dias alguns dos nossos exercícios completos de análise de dados. Esses exercícios fazem parte do repositório atual do Clube, que irá migrar para o novo projeto. Além de todos os exercícios existentes, vamos adicionar novos exercícios e códigos toda semana, mantendo os membros atualizados sobre o que há de mais avançado em análise de dados, econometria, machine learning, forecasting e R.

Hoje, vou mostrar como é possível utilizar a já famosa ferramenta Google Trends dentro do R. O Google Trends é uma ferramenta do Google que mostra os mais populares termos buscados em um passado recente. A ferramenta apresenta gráficos com a frequência em que um termo particular é procurado em várias regiões do mundo, e em vários idiomas.

Para ilustrar o seu uso com o R, vamos ver como está o comportamento das buscas pelas palavras "seguro desemprego" e "emprego". Como sempre, o script começa carregando alguns pacotes.


library(gtrendsR)
library(tidyverse)
library(lubridate)
library(scales)

Na sequência, usamos a função gtrends do pacote gtrendsR para buscar as palavras que queremos.


data_gtrends = gtrends(keyword = c("seguro desemprego", 'emprego'),
geo = "BR", time='all', onlyInterest=TRUE)

Fazemos algum tratamento dos dados que pegamos com o código abaixo.


seguro_desemprego = data_gtrends$interest_over_time %>%
filter(keyword == 'seguro desemprego') %>%
mutate(mes = floor_date(date, "month")) %>%
group_by(mes) %>%
summarize(interesse = mean(hits)) %>%
mutate(date = as.Date(mes)) %>%
select(date, interesse)

A seguir, um gráfico com os dados resultantes.

O Google Trends é uma excelente ferramenta para capturar tendências. No exemplo acima, podemos ver que os pedidos de seguro-desemprego explodiram com a eclosão da pandemia e vem se reduzindo desde então.

______________________

(*) Cadastre-se aqui na nossa Lista VIP para receber um super desconto na abertura das Turmas 2021.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.