Séries temporais: detectando mudança de média no R

Ao analisar séries temporais pode ser útil identificar pontos de mudança em seu comportamento, utilizando métodos de detecção para tal. Existem diversos métodos e algoritmos para implementar esse tipo de análise, desde simples cálculos envolvendo erro quadrático médio até abordagens Bayesianas. Neste texto mostramos uma maneira simples de detectar pontos de mudança em uma série temporal com o método de Taylor (2000).

Metodologia

O método desenvolvido por Taylor (2000), conforme mencionado, se baseia em um cálculo simples de erro quadrático médio (EQM) para identificar quando uma mudança na série ocorreu. A ideia geral é separar a série temporal em segmentos e calcular o EQM dos mesmos para identificar pontos de mudança, considerando o valor que minimiza o EQM. Formalmente:

onde:

Exemplo no R

A implementação do método de detecção de pontos de mudança de média, desenvolvido por Taylor (2000), é feita recursivamente pelo pacote ChangePointTaylor no R.

Neste exemplo aplicamos o método para a série anual da Produtividade total dos fatores da economia brasileira, variável disponível no dataset da Penn World Table 10.0.


# Pacotes -----------------------------------------------------------------

library(ChangePointTaylor)
library(pwt10)
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
library(ggtext)

# Dados -------------------------------------------------------------------

# Tibble com dados da Produtividade total dos fatores - Brasil (2017 = 1)
tfp_br <- pwt10::pwt10.0 %>%
dplyr::filter(isocode == "BRA") %>%
dplyr::select(.data$year, .data$rtfpna) %>%
tidyr::drop_na() %>%
dplyr::as_tibble()

tfp_br

# Aplicar método de detecção de mudança (Taylor, 2000) --------------------

# Informar vetor de valores da série e
# vetor de nomes (usalmente a data correspondente ao valor)
change_points <- ChangePointTaylor::change_point_analyzer(
x = tfp_br$rtfpna,
labels = tfp_br$year
)

dplyr::as_tibble(change_points)

# Visualização de resultados ----------------------------------------------

# Gera gráfico ggplot2
tfp_br %>%
ggplot2::ggplot(ggplot2::aes(x = year, y = rtfpna)) +
ggplot2::geom_line(size = 2, color = "#282f6b") +
ggplot2::geom_vline(
xintercept = change_points$label,
color = "#b22200",
linetype = "dashed",
size = 1
) +
ggplot2::scale_x_continuous(breaks = scales::extended_breaks(n = 20)) +
ggplot2::scale_y_continuous(labels = scales::label_number(decimal.mark = ",", accuracy = 0.1)) +
ggplot2::labs(
title = "Produtividade Total dos Fatores - Brasil",
subtitle = "Preços nacionais constantes (2017 = 1)<br>Linhas tracejadas indicam pontos de mudança de média (Taylor, 2000)",
y = "PTF",
x = NULL,
caption = "**Dados**: Penn World Table 10.0 | **Elaboração**: analisemacro.com.br"
) +
ggplot2::theme_light() +
ggplot2::theme(
panel.grid = ggplot2::element_blank(),
axis.text = ggtext::element_markdown(size = 12, face = "bold"),
axis.title = ggtext::element_markdown(size = 12, face = "bold"),
plot.subtitle = ggtext::element_markdown(size = 16, hjust = 0),
plot.title = ggtext::element_markdown(
size = 30,
face = "bold",
colour = "#282f6b",
hjust = 0,
),
plot.caption = ggtext::element_textbox_simple(
size = 12,
colour = "grey20",
margin = ggplot2::margin(10, 5.5, 10, 5.5)
)
)

Referências

Taylor, W. A. (2000). Change-point analysis: a powerful new tool for detecting changes.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.