Analisando a inflação por faixa de renda no Python

Existem diversas maneiras de analisar a taxa de inflação de uma economia, dentre elas:

  • Análise do índice cheio;
  • Análise dos grupos do índice;
  • Análise regional;
  • Análise dos núcleos;
  • Análise de difusão;
  • Análise das classficações de subitens.

Aprenda mais sobre análise da inflação através do curso de Análise de Conjuntura usando Python.

Apesar de todas estas análises permitirem investigar a evolução do custo de vida dos brasileiros, elas colocam o cobrador de ônibus e o gerente de banco em uma sacola só. Em outras palavras, perfis diferentes de renda podem estar expostos a custos de vida diferentes, o que faz com que uma análise por faixa de renda seja relevante.

Indicador IPEA de inflação por faixa de renda

O IPEA calcula desde 2017 indicadores mensais de inflação por faixa de renda. No total são 6 faixas de renda analisadas:

Faixa de renda Renda domiciliar (R$ jan./2023)
Renda muito baixa Menor que R$ 2.015,18
Renda baixa Entre R$ 2,015,18 e R$ 3.022,76
Renda média-baixa Entre R$ 3.022,76 e R$ 5.037,94
Renda média Entre R$ 5.037,94 e R$ 10.075,88
Renda média-alta Entre R$ 10.075,88 e R$ 20.151,75
Renda alta Maior que R$ 20.151,76

Estes indicadores segmentados permitem comparar o custo de vida, em termos de inflação, das faixas de renda, além de possibilitar a identificação dos itens que mais contribuiram para uma faixa ou outra.

Coletando dados do IPEA no Python

Para coletar e analisar dados de inflação por faixa de renda na variação acumulada em 12 meses, podemos utilizar o código de Python abaixo:

Para obter o código deste exercício faça parte do Clube AM e receba semanalmente códigos de ciência de dados em R e Python!

Conclusão

Neste artigo mostramos como coletar dados de inflação segmentados por faixa de renda e como calcular a variação acumulada em 12 meses usando a linguagem de programação Python.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Referências

Lameiras, M. A. P.; Sacchet, S.; Souza-Júnior, J. R.C. Indicador Ipea de Inflação por Faixa de Renda. Carta de Conjuntura, n. 37, 16 nov. 2017. Disponível em: <http://www.ipea.gov.br/cartadeconjuntura/index.php/2017/11/16/inflacao-por-faixa-de-renda/>.

Notas de rodapé

  1. Veja a metodologia em Lameiras et al. (2017).↩︎

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.