Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Aqui vamos usar como exemplo um base de dados desenvolvida no curso de Previsão Macroeconômica usando Python e IA, tomando como objetivo de análise a variável da taxa de inflação, medida pelo IPCA.

Primeiro, carregamos as bibliotecas e a base de dados:

            ipca    ibc_br  ...  inpc  ipca_15
data                        ...               
2004-01-01  0.76 -0.011597  ...  0.83     0.68
2004-02-01  0.61  0.008685  ...  0.39     0.90
2004-03-01  0.47  0.118665  ...  0.57     0.40
2004-04-01  0.37 -0.042133  ...  0.41     0.21
2004-05-01  0.51 -0.012466  ...  0.40     0.54

[5 rows x 93 columns]

Dica 01: analise a evolução temporal dos dados

Será que os dados possuem alguma tendência? Algum valor extremo? Os dados são ruidosos ou suaves? Todas estas questões podem ser analisadas através de um gráfico de linha:

Dica 02: desagregue os dados em pequenas partes

Quais são as pequenas “peças” que formam a variável? Uma decomposição entre tendência, sazonalidade e ruído pode ajudar a analisar esta questão:

Dica 03: analise a influência do passado

O quão os dados passados influenciam os dados do presente e futuro? Como quantificar essa relação? O cálculos das funções de autocorrelação podem ajudar a entender estas características:

Dica 04: analise a relação entre os dados

Por fim, qual é a relação entre as variáveis da tabela? A relação é forte, nula ou fraca? A relação é positiva ou negativa? Estas questões podem ser analisadas através do cálculo do coeficiente de correlação:

Conclusão

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, conheça o Clube AM clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.