Como reverter a primeira diferença de uma série temporal?

 

Modelagem de séries temporais frequentemente exige a aplicação de transformações nas variáveis, tal como a bem conhecida primeira diferença. Formalmente, podemos descrever essa transformação como:

Ou seja, dado uma série temporal regularmente espaçada, subtraímos do valor em t o valor anterior (t-1), obtendo a série dita "na primeira diferença" ou "nas diferenças".

A mudança de nível da série geralmente contorna diversas características "não desejadas" pelo analista como tendência, sazonalidade, etc., mas dificulta a interpretação dos valores - especialmente quando pretende-se comunicá-los para públicos não técnicos. Para este objetivo é de grande utilidade saber como diferenciar uma série temporal e, sobretudo, também como reverter a transformação.

Para reverter a primeira diferença de uma série utilizamos a soma cumulativa, representada como:

Ou seja, no final teremos um vetor com a soma de cada valor em t com todos os anteriores, valores estes que neste caso podem representar a série na primeira diferença que se deseja reverter.

Exemplo no R

Para exemplificar, vamos aplicar um exercício simples no R com o objetivo de 1) tomar a primeira de uma série e 2) reverter a transformação para obter a série original.

Para esse exemplo você precisará dos seguintes pacotes:


library(magrittr) # CRAN v2.0.1
library(GetBCBData) # CRAN v0.6
library(dplyr) # CRAN v1.0.7
library(timetk) # CRAN v2.6.2
library(tsibble) # CRAN v1.0.1
library(tidyr) # CRAN v1.1.4

Utilizaremos uma série conhecidamente não estacionária: a taxa de câmbio (R$/US$). Primeiro, importamos a série diretamente do banco de dados do Banco Central (SGS/BCB) e tratamos os dados para obter um tibble:


dados <- GetBCBData::gbcbd_get_series(
id = 3696,
first.date = "2000-01-01",
use.memoise = FALSE
) %>%
dplyr::select("date" = "ref.date", "value") %>%
dplyr::as_tibble()
dados

Uma rápida visualização dos dados:


timetk::plot_time_series(
.data = dados,
.date_var = date,
.value = value,
.smooth = FALSE,
.title = "Taxa de câmbio (R$/US$)"
)

Para criar a série na primeira diferença usamos a função tsibble::difference1, com seus argumentos padrão:

dados %<>%
dplyr::mutate(value_diff = tsibble::difference(value))
dados

Quando a diferença é aplicada inevitavelmente perdemos uma observação (a primeira), sendo preenchida no objeto como um NA. Sendo assim, a reversão dessa série para o seu nível (valores originais) requer uma artimanha: devemos substituir o valor NA pelo valor original da série correspondente a esse período dos dados e, então, usar a função cumsum para calcular a soma cumulativa.
dados %<>%
dplyr::mutate(
value_diff = dplyr::if_else(is.na(value_diff), value, value_diff),
value_revert = cumsum(value_diff)
)
dados
Checando se a série revertida corresponde aos valores originais:
all.equal(dados$value_revert, dados$value)
# [1] TRUE

Os cálculos ocorreram conforme o esperado: a série original da taxa de câmbio importada do BCB é igual à série que aplicamos e revertemos a primeira diferença.

Simples, não?

Por fim, vale comparar visualmente o comportamento da série em nível e na diferença (primeiro gráfico):


dados %>%
dplyr::select(
"date",
"Nível" = "value",
"1ª diferença" = "value_diff",
"Série revertida" = "value_revert"
) %>%
tidyr::pivot_longer(
cols = -"date",
names_to = "variable"
) %>%
timetk::plot_time_series(
.date_var = date,
.value = value,
.facet_vars = variable,
.smooth = FALSE,
.title = "Taxa de câmbio (R$/US$)",
.interactive = FALSE
)

 


[1] Para um equivalente em base R veja ?diff.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API's ou localmente através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.