Análise do coronavírus com o R

Foi uma semana excepcionalmente complexa para os mercados financeiros globais. Na BOVESPA, houve quatro circuit breakers, algo inédito na história da bolsa. A conjunção do avanço do coronavírus pelo mundo com a tensão no mercado de petróleo estão por trás do abalo sísmico. De forma a compreender o avanço da doença pelo mundo, há uma boa base de dados disponibilizada pelo Center for Systems Science and Engineering da Johns Hopkins University. Os dados estão disponíveis para o período de 22 de janeiro a 12 de março. O repositório pode ser visto aqui.

Para quem tiver interesse em olhar os dados com o R, é possível ainda baixar um guia bem legal produzido pelo Yanchang Zhao. Há um post no R Bloggers sobre o assunto aqui. A seguir, eu ilustro o avanço da doença pelo mundo e o comportamento da taxa de letalidade.

Os casos confirmados de coronavírus chegaram a 128,3 mil casos, com uma taxa de letalidade de 3,67%. Chama atenção a rapidez com que a doença tem se alastrado pelo mundo. Tendência que deve continuar nas próximas semanas.

___________________

(*) Isso e muito mais você aprende nos nossos Cursos Aplicados de R.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.