Gerando aplicativos interativos com Shiny

No Dicas de R dessa semana, vamos mostrar as funcionalidades básicas da ferramenta Shiny, que permite gerar aplicativos interativos em R. Nosso exemplo será um mapa da localização de jogadores famosos da Champions League ao receberem passes, utilizando os dados da plataforma StatsBomb - acessados através do pacote StatsBombR - e também a formatação em ggplot do pacote ggsoccer. Primeiramente, vamos carregar os pacotes utilizados:


library(shiny)
library(ggplot2)
library(ggsoccer)
library(tidyverse)

Um aplicativo em Shiny possui dois componentes principais: a interface do usuário, e um servidor. O primeiro indica todos os elementos que serão visíveis no programa final, e as interações que podem ocorrer entre eles. A interface apresentada abaixo contém um elemento de título, e um elemento de layout com barra lateral, que é subdivido entre o gráfico principal e a barra que faz a escolha - input do usuário - do jogador a ser apresentado.

ui <- fluidPage(

titlePanel("Posicionamento de jogadores ao receberem passes"),

sidebarLayout(

sidebarPanel(

selectInput(inputId = "players",
label = "Escolha um jogador:",
choices = c("Messi",
"Toni Kroos",
"Cristiano Ronaldo",
"Iniesta",
"Robben",
"Pirlo"))
),

mainPanel(plotOutput("fieldPlot"))

)
)

As escolhas que podem ser feitas foram definidas acima, porém o elemento fieldPlot referenciado na última linha não existe ainda. Ele é gerado internamente e apenas seu resultado é apresentado, logo seu código faz parte do servidor do programa:

server <- function(input, output){

output$fieldPlot <- renderPlot({

passes_de_jogo %>% filter(grepl(input$players, pass.recipient.name)) %>%
ggplot(aes(x=pass.end_location.x, y = pass.end_location.y))+
annotate_pitch(dimensions = pitch_statsbomb) +
geom_bin2d(binwidth = c(5, 5))+
theme_pitch()

})

}

Com os dois componentes em mãos, basta rodar o aplicativo:


shinyApp(ui = ui, server = server)

O resultado pode ser disponibilizado online, através do shinyapps.io. O aplicativo feito aqui está disponível aqui.
Abaixo, um exemplo do resultado:

É interessante notar que os dados aparentam estar invertidos - Robben está recebendo passes do lado esquerdo enquanto
que Cristiano Ronaldo do lado direito, contrariando suas posições originais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.