Baixando dados do Banco Mundial com o R

Com o R, é possível acessar diversas bases de dados e baixar o que precisa diretamente para o RStudio. Um exemplo disso é a base de dados do Banco Mundial. Nessa Dica de R - sim, volto a publicar toda quarta-feira uma dica de R aqui no Blog - vamos mostrar como pegar os dados sobre poupança e taxa de juros de diversos países com o pacote WDI. Como de praxe, o código começa carregando alguns pacotes que utilizaremos.


library(WDI)
library(ggplot2)
library(ggrepel)
library(png)
library(grid)

A seguir, podemos pegar os dados que precisamos.


interest = WDI(country='all',
indicator = 'FR.INR.RINR',
start=2019, end=2019)

saving = WDI(country = 'all',
indicator = 'NY.GNS.ICTR.ZS',
start=2019, end=2019)

data = cbind(interest, saving)
data = data[complete.cases(data),]
data$iso2c = data$iso2c = data$country = data$year = data$year = NULL
colnames(data) = c('interest', 'country', 'saving')
data = subset(data, interest>0 & saving>0)

Um gráfico com os dados é posto abaixo.

 

______________

Para acessar os códigos completos desse exercício, é preciso fazer parte do Clube AM.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Modelo de Previsão da Dívida Bruta do Governo Geral (DBGG) para 2025

Neste exercício, contruímos um algoritmo simples de cenarização para a Dívida Bruta do Governo Geral (DBGG) em % do PIB, usando apenas dados públicos, simulações estatísticas, a literatura recente e a linguagem R. Em uma abordagem semi-automatizada, as simulações do modelo se aproximam das previsões do mercado para o ano de 2025.

Modelo de Previsão do Resultado Primário para 2025

Neste exercício, contruímos um modelo simples de previsão para o Resultado Primário do Setor Público Consolidado (acumulado em 12 meses, % PIB), usando apenas dados públicos, modelos econométricos, a literatura recente e a linguagem R. Em uma abordagem automatizada, as previsões do modelo se aproximam das previsões do mercado para o ano de 2025.

Estimando o Hiato do Produto do Brasil usando a linguagem R

Este exercício estima o Hiato do Produto do Brasil utilizando quatro métodos univariados distintos. Para lidar com o problema de fim de amostra causado por filtros univariados, incorporamos previsões do PIB provenientes de agentes econômicos e projeções simples, estendendo a série temporal além da amostra original. Todo o processo de coleta, tratamento, estimação e visualização dos hiatos foi realizado na linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.