Brasil: a cigarra que quer viver como formiga

Dia desses, publiquei aqui no Blog um post sobre o projeto maddison, que busca publicar dados de pib per capita de todos os países do mundo para tempos remotos. Um baita trabalho de história econômica, diga-se de passagem. Com base no respectivo pacote maddison no R, a propósito, é possível fazer comparações de pib per capita entre diversos países...

Por exemplo, muitas pessoas gostam de falar do sistema de proteção social da Suécia e, indubitavelmente, querem ter esse sistema aqui no Brasil. O problema desse tipo de coisa é que ela não leva em conta, justamente, o tal do pib capita. Abaixo, fazendo uso do pacote maddison, nós pegamos o dado para os dois países.


library(maddison)
df = subset(maddison, year >= '1870-01-01' &
iso2c %in% c('BR', 'SE'))

E a seguir, colocamos um gráfico.


ggplot(df, aes(x=year, y=gdp_pc, colour=country))+
geom_line(size=.8)+
scale_colour_manual('',values=c('Brazil'='darkblue',
'Sweden'='orange'))+
scale_x_date(breaks='10 years',
date_labels = '%Y')+
labs(x=NULL, y='PIB per capita (GK dólar int, 1990)',
title='PIB per capita: Brasil vs. Suécia',
subtitle='Fonte: Maddison Project Dataset')+
theme(panel.background = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.background = element_rect(fill='#8abbd0'),
axis.line = element_line(colour='black',
linetype = 'dashed'),
axis.line.x.bottom = element_line(colour='black'),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(.4,.5),
legend.background = element_rect((fill='#acc8d4')),
legend.key = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.margin=margin(5,5,15,5))+
annotation_custom(g,
xmin=as.Date('1870-01-01'),
xmax=as.Date('1893-01-01'),
ymin=15000, ymax=25000)

No início da série, 1870, a Suécia tinha um pib per capita cerca de 1.9 maior do que o Brasil. No último dado da série, 2010, o pib per capita da Suécia é cerca de 3.7 maior do que o nosso. Em outras palavras, houve um processo de divergência entre os dois países.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.