Criando relatórios customizados com o pacote {pagedreport}

Quando se está interessado na montagem de relatórios, o Rmarkdown é a primeira ferramenta que se passa na mente, afinal, ele facilita na construção de apresentações com o R. Apesar disso, há a dificuldade da criação de relatórios com visuais mais elegantes. Para suprir essa demanda, o pacote {pagedreport} facilita o trabalho de customizar PDFs gerados pelo Rmarkdown.  No post de hoje, vamos mostrar um pouco sobre esse pacote.

O pacote, até o momento, possui 3 temas principais, cada um com seu próprio estilo e que também podem ser alterados suas configurações visuais padrão conforme aquela que melhor atende o usuário, sendo possível alterar cores, fontes e imagens. Para utilizar o pacote, primeiro ele deve ser baixado através do Github.

Após a instalação (é recomendado reiniciar o Rstudio), para criar sua primeira apresentação com o {pagedreport}, vá em File > New File > R markdown > From Template. Veja, como na imagem abaixo, que aparecerá três opções ligadas ao {pagedreport} , cada uma representando um tema que melhor agrada. Para prosseguir com a criação, selecione uma opção e clique em Ok.

Ao prosseguirmos, será aberto um arquivo .Rmd com os códigos iguais a imagem abaixo. Veja que se comparar o YAML com documentos Rmarkdown padrão, verá que não há nada de assustador.

 

  • title: título,
  • subtitle: subtítulo
  • author: autor
  • date: data

O que realmente muda é a parte após o output, no qual contém o uso do pacote e suas respectivas configurações.

No caso, vemos algumas opções, além de "setar" o template, em pagedreport::paged_grid:, é configurado a logo, por meio de um link da internet (recomendável, pois dessa forma pode se tornar reprodutível), o knit e a cor principal do PDF.

Outros templates podem vir com configurações a mais ou que podem ser adicionadas, como:

  • front_img: configura a imagem da capa.
  • back_img: altera a imagem da capa do fundo.
  • img_to_dark: TRUE ou FALSE, escure as imagens de capa e fundo.
  • logo_to_white: TRUE ou FALSE, transforma a imagem do logo em branco.
  • secondary_color: altera a cor secundária.

Outras possíveis seções de configuração do YAML condensam as padrões do Rmarkdown.

No final, podemos construir um documento pdf com a seguinte capa personalizada:

_________________________________________

Fizemos aqui uma introdução de como customizar seus relatórios PDFs de forma simples. Caso queira se aprofundar na apresentação de relatórios, conhecer mais sobre Rmarkdown e entender melhor o pacote {pagedreport}, é importante que confira nosso Curso de produção de Relatórios em Rmarkdown.

_________________________________________

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.