equatiomatic: transformando modelos em equações LaTeX

Quem trabalha com modelagem costuma ter que escrever equações de forma bastante rotineira. Para exercícios simples, é bastante tranquilo escrever uma ou outra equação em \LaTeX. O problema é quando você tem muitas equações no mesmo documento. Nessa Dicas de R - disponível toda quarta-feira aqui no blog da AM -vamos divulgar um novo pacote, o equatiomatic, que trata justamente desse problema.

library(equatiomatic)
library(palmerpenguins)
library(ggplot2)
library(latex2exp)

Usei a própria documentação do pacote para exemplificar o seu uso. Primeiro, rodamos um lm qualquer como o abaixo.


m <- lm(bill_length_mm ~ bill_depth_mm + flipper_length_mm, penguins)

Agora, basta usar a função extract_eq para que tenhamos acesso à equação.


extract_eq(m)

(1)   \begin{equation*} \operatorname{body\_mass\_g} = \alpha + \beta_{1}(\operatorname{bill\_length\_mm}) + \epsilon \end{equation*}

A equação extract_eq contém, inclusive, alguns argumentos que permitem a customização da equação a ser exibida. Para além disso, outra coisa legal do pacote é poder plotar gráficos com equações, como abaixo.


# Fit an lm model
m <- lm(body_mass_g ~ bill_length_mm, penguins)
# extract equation with `ital_vars = TRUE` to avoid the use of `\operatorname`
m_eq <- extract_eq(m, use_coef = TRUE, ital_vars = TRUE)
# swap escaped underscores for dashes
prep_eq <- gsub("\\\\_", "-", m_eq)
# swap display-style 
prep_eq <- paste("$", as.character(prep_eq), "$", sep = "")
# Plot
ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g)) +
geom_point() +
geom_smooth(method = "lm") +
labs(title = "Relation between bill length and body mass",
subtitle = TeX(prep_eq))

____________

Um pdf e um script com todo o código desse exercício está disponível para os membros do Clube AM.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.