Instalando o pacote BMR nas versões 3.5.2 e posteriores do R

Em alguns cursos da Análise Macro, eu utilizo a função gtsplot do pacote BMR para construir gráficos múltiplos. Esse tipo de gráfico, a propósito, pode ser facilmente obtido com o código-base do R ou com a função grid.arrange do pacote gridExtra conjuntamente com as funções do ggplot2. Já para instalar o BMR nas versões mais novas do R, é preciso seguir o seguinte script:


install.packages('RcppArmadillo')
install.packages('ggplot2')
install.packages('devtools')

Sys.setenv(R_REMOTES_NO_ERRORS_FROM_WARNINGS="true")
library(devtools)

install_github("kthohr/BMR")

Certifique-se ademais que você tenha o Rtools instalado na sua máquina. Caso receba algum erro de tools, adicione a linha abaixo no seu código:


options(buildtools.check = function(action) TRUE )

Creio que isso resolva a maior parte dos problemas de instalação desse pacote. Caso não resolva o seu, entre em contato pelo nosso suporte no botão azul no lado inferior direito da plataforma, ok?

________________________

Maiores detalhes sobre o erro, ver aqui.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Existe correlação entre vagas de emprego e o S&P 500?

O que explica a divergência entre S&P 500 e vagas de emprego? Seria o impacto da IA ou a política monetária? Utilizando um análise dados e modelo VAR e testes de causalidade de Granger usando a linguagem de programação R, investigamos a relação e o motivo por trás da "boca de jacaré".

Como medir a comunicação do Banco Central?

Descubra como o índice ALT transforma a linguagem do Banco Central em dados analisáveis, permitindo investigar como o tom das atas do COPOM varia conforme o cenário macroeconômico e as decisões de política monetária.

Análise de Séries Temporais com a Linguagem R: dados ISP-RJ

Neste tutorial, vamos conduzir uma análise diagnóstica completa. Começaremos visualizando a série e sua tendência, depois a decomporemos em seus componentes fundamentais. Em seguida, investigaremos a distribuição estatística dos dados e, por fim, aplicaremos técnicas mais avançadas, como a análise de autocorrelação e testes de estacionariedade, que são pré-requisitos cruciais para a construção de modelos de previsão robustos como o ARIMA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.