Regressões espúrias: PIB per capita do Chile vs. preço do cobre

As manifestações no Chile não param de produzir textos pelas redes sociais. A última que vi foi a relação entre o preço do cobre e o pib per capita do país vizinho. Resolvi dar uma olhada nas séries e alertar para alguns problemas nessa relação. Os dados utilizados no exercício são do FMI e estão disponíveis no final do post. Eu os importo com o código abaixo para o R.


library(readxl)
library(forecast)
library(xts)
library(ggplot2)
library(stargazer)

cobre = read_excel('cobre.xlsx', col_types = c('date', 'numeric'))
pib = window(ts(read_excel('pib.xlsx')[,-1], start=1960, freq=1),
start=1980)

A série de preço do cobre que consegui é mensal, então de modo a comparar com o pib per capita do Chile, é preciso anualizá-la. Faço isso abaixo, já pegando uma janela que eu possa comparar com o pib do Chile.


cobre = xts(cobre$cobre, order.by = cobre$date)
cobre = apply.yearly(cobre, FUN=mean)
cobre = window(cobre, start='1980-12-01', end='2018-12-01')

Com os dados devidamente comparáveis, faço um gráfico de correlação como abaixo.

A correlação entre as séries é altamente positiva, de 0,91. Os gráficos das séries são colocados em seguida.

Como podemos ver, as séries não são estacionárias. Isso, entretanto, não impede que possamos trabalhar com elas em nível, desde que exista o que chamamos de relação de longo prazo entre as mesmas. No jargão econométrico, dizemos que existe uma relação de longo prazo entre duas séries não estacionárias se as mesmas cointegram. Há algumas formas de verificar isso. Talvez a mais simples seja rodar uma regressão entre elas e verificar se os resíduos são estacionários. Se for o caso, é possível dizer que as séries cointegram. Abaixo, coloco o output de uma regressão entre o pib per capita do Chile e o preço do cobre.

Dependent variable:
pib
cobre 1.916***
(0.141)
Constant -77.583
(606.886)
Observations 39
R2 0.834
Adjusted R2 0.829
Residual Std. Error 2,049.611 (df = 37)
F Statistic 185.387*** (df = 1; 37)
Note: *p<0.1; **p<0.05; ***p<0.01

E agora, coloco um gráfico dos resíduos da regressão...

Como se vê, os resíduos da regressão estão longe de serem estacionários. O leitor mais interessado pode rodar um teste de raiz unitária sobre os mesmos. Assim, não podemos acreditar no output da regressão simplesmente porque os resultados são espúrios...

Por fim, outro alerta: não estou querendo dizer nada com esse exercício simples sobre a dependência ou não da economia chilena em relação ao cobre. Apenas que não podemos confiar em uma regressão entre o pib per capita do Chile contra o preço do Cobre... 😉

___________________________________________

(*) Quer aprender mais sobre séries temporais? Veja nosso Curso de Séries Temporais usando o R.

(**) As séries que utilizei podem ser baixadas aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.