Mineração de textos do COPOM: o que os comunicados dizem?

No exercício anterior, construímos um indicador que quantifica o sentimento proveniente das decisões de política monetária, implícito nas atas do COPOM. Hoje, avaliaremos se o indicador provê informações úteis para tomadores de decisão, seus pontos fortes e fracos, assim como sua interpretação prática.

Para obter o código deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Interpretação do indicador

O indicador de sentimentos aqui abordado foi construído pelo método de contagem de palavras positivas/negativas nos textos, com o auxílio do dicionário Loughran-McDonald. Dessa forma, o indicador assume valores inteiros, {..., -2, -1, 0, 1, 2, ...}, onde valores positivos indicam sentimos positivos, valores negativos indicam sentimentos negativos e valor igual a zero indica neutralidade. O sentimento é atribuído para cada texto (ata) e informa o líquido entre as classificações das palavras no texto (positivo - negativo), após uma série de pré-processamentos.

Sendo assim, quando vemos uma coluna em azul no gráfico anterior, podemos esperar que — lendo a ata desta reunião do COPOM — os diretores usaram palavras com sentimentos/emoções mais positivos do que negativos. Tomando como exemplo a coluna mais alta do gráfico, referente a reunião nº 178 de outubro/2013, nosso algoritmo encontrou 74 palavras negativas e 152 positivas, das quais algumas destas últimas são "fortalecimento", "melhora" e "progresso".

Seguindo esse raciocínio, as colunas em vermelho indicam mais palavras com sentimentos negativos do que positivos e as observações em que a coluna possui valor zero indicam o mesmo número de palavras positivas e negativas. Isso é tudo que você consegue interpretar deste indicador. Qualquer análise além disso está sujeita a viés do analista.

Portanto, vamos falar de vieses do indicador, seus pontos fortes e fracos.

Pontos fortes e fracos

O indicador produzido é um trabalho inicial e embrionário, isto posto, destacamos brevemente algumas considerações pertinentes sobre o seu uso.

Pontos fortes:

  • Fácil interpretação;
  • Algoritmo simples de implementar e automatizável;
  • Não exige uso de modelos/estatística;
  • Apelo visual/facilidade de comunicar resultados.

Pontos fracos:

  • O número de palavras total em cada texto é desconsiderado;
  • O contexto da palavra não é levado em consideração;
  • O método não considera dependências temporais;
  • O indicador é agnóstico ao ciclo econômico.

Uma crítica que pode surgir sobre o indicador exposto é a sua divergência em relação ao ciclo econômico, conforme pontuado acima, especialmente na crise de 2014-16. O gráfico abaixo, atualizado com áreas sombreadas indicando períodos datados como recessão da economia brasileira pelo CODACE/FGV, pode ajudar a entender.

Uma expectativa razoável, para a maioria das pessoas, em relação ao indicador de sentimentos é a de que períodos recessivos estejam associados a sentimentos negativos. Nos períodos prévios a crise de 2014-16 essa relação parece se manifestar relativamente bem, ao passo que na crise a relação inverte-se. E isso pode ser resultado da simplicidade "em excesso" do indicador, conforme considerações pontuadas acima. Em outras palavras, há certamente espaço para aperfeiçoar o indicador.

Em suma, o procedimento quantitativo empregado simplifica bastante a leitura dos comunicados de política monetária, mas perde-se informações valiosas no processo.

Saiba mais

Códigos de replicação em R estão disponíveis para membros do Clube AM da Análise Macro. Se você achou o tema interessante, confira o próximo exercício onde trataremos da relação entre o indicador de sentimentos e variáveis macroeconômicas brasileiras.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.