Análise dos títulos do Tesouro Direto com o R

A forte aversão a risco que tomou conta do mercado nas últimas semanas não deixou impune o mercado de títulos públicos. Uma análise dos yields associados aos principais títulos negociados pelo chamado Tesouro Direto mostra o stress que tem tomado conta dos investidores. Para ilustrar, vamos utilizar o pacote GETTDData para coletar os dados diretamente do Tesouro Direto, bem como outros pacotes do R para tratamento e visualização dos dados.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)
library(GetTDData)
library(ecoseries)
library(RColorBrewer)

Com os pacotes carregados no meu arquivo .Rmd, posso começar a coletar os dados. Eu começo pelas NTN-B, agora nomeadas como Tesouro IPCA. O código abaixo faz o download e a leitura das planilhas.


download.TD.data('NTN-B')
ntnb <- read.TD.files(dl.folder = 'TD Files',
asset.codes = 'NTN-B')

A seguir, nós podemos visualizar alguns dos títulos que acabamos de coletar tendo como referência janeiro do ano passado.


filter(ntnb, ref.date > '2019-01-01') %>%
ggplot(aes(x=ref.date, y=yield.bid*100, colour=asset.code))+
geom_line()+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='% a.a.',
title='NTN-B',
caption='Fonte: Tesouro Direto')

Como se vê pelo gráfico, há um nítido salto nos yields, provocado pelo aumento da incerteza. Como proxy, aliás, para esse aumento de incerteza, podemos visualizar o comportamento do risco-país. Podemos coletá-lo a partir do site do IPEADATA com o pacote ecoseries. O código a seguir ilustra.


embi = series_ipeadata('40940', periodicity = 'D')$serie_40940
filter(embi, data > '2019-01-01') %>%
ggplot(aes(x=data, y=valor))+
annotate("rect", fill = "gray", alpha = 0.5,
xmin = as.Date('2020-02-15'),
xmax = as.Date('2020-04-28'),
ymin = -Inf, ymax = Inf)+
geom_line()+
scale_x_date(breaks = date_breaks("1 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='Índice',
title='EMBI+ Risco-Brasil',
caption='Fonte: IPEADATA')

De fato, houve um salto no risco-Brasil de meados de fevereiro para cá, o que reflete os desdobramentos da pandemia do coronavírus e também, infelizmente, o aumento da incerteza doméstica.

_____________________

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.