Coletando dados financeiros com o R

Os efeitos da pandemia do coronavírus não param de nos surpreender. Ontem, o preço do contrato futuro de petróleo com vencimento em maio fechou no terreno negativo! Ou seja, as pessoas pagaram para quem comprou o papel. Para ilustrar, podemos pegar os dados do Yahoo Finance através do pacote quantmod, como iremos ensinar no nosso novo Curso da área de finanças Mercado Financeiro e Gestão de Portfólios. Carregamos o quantmod e outros pacotes abaixo para fazer o tratamento e visualização dos dados.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)

Uma vez carregados os pacotes, nós podemos pegar o contrato de petróleo com vencimento em maio de 2020 com o código abaixo.


getSymbols('CLK20.NYM', warning=FALSE)

Com a função tk_tbl do pacote timetk nós transformamos nossos dados de xts para tibble.


df = `CLK20.NYM` %>%
tk_tbl(preserve_index = TRUE,
rename_index = 'date') %>%
drop_na()

E a seguir, podemos visualizá-los com o pacote ggplot2.


ggplot(df, aes(x=date, y=`CLK20.NYM.Low`))+
geom_line()+
geom_hline(yintercept=0, colour='red', linetype='dashed')+
scale_x_date(breaks = date_breaks("3 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=10, face='bold'))+
labs(x='', y='',
title='Preço mínimo do Contrato Futuro de Petróleo WTI com vencimento em maio de 2020',
caption='Fonte: analisemacro.com.br com dados do Yahoo Finance')

Observe que o preço rompeu a barreira do zero ontem, 20 de abril. Um marco dos tempos sombrios que estamos vivendo...

_____________________

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.