Análise de Dados de Crédito utilizando o Python

A análise do Mercado de Crédito é crucial para interpretar a conjuntura econômica do país. Acompanhar este mercado compreende em entender os movimentos do consumo investimentos das empresas, e para tanto, podemos analisar estes indicadores capturando dados da Concessões Mensais de Crédito, da Taxa média de juros das operações de crédito, do Spread médio das operações de crédito e inadimplência utilizando o Python.

Concessões Mensais de Crédito Nominais

Concessões mensais de crédito: Total


Concessões mensais de crédito: PJ x PF

Concessões mensais de crédito: Livre x Direcionado

Concessões mensais de crédito deflacionados

Juros, Spread Bancário e Inadimplência

Quer saber mais?

Veja nossos cursos de Macroeconomia através da nossa trilha de Macroeconomia Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.