Análise dos títulos do Tesouro Direto com o R

Uma das grandes vantagens de utilizar o R é poder automatizar a coleta de dados. Para ilustrar, vamos utilizar o pacote GETTDData para coletar os dados do Tesouro Direto, bem como outros pacotes do R para tratamento e visualização dos dados.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)
library(GetTDData)
library(ecoseries)
library(RColorBrewer)

Com os pacotes carregados no meu arquivo .Rmd, posso começar a coletar os dados. Eu começo pelas NTN-B, agora nomeadas como Tesouro IPCA. O código abaixo faz o download e a leitura das planilhas.


download.TD.data('NTN-B')
ntnb <- read.TD.files(dl.folder = 'TD Files',
asset.codes = 'NTN-B')

A seguir, nós podemos visualizar alguns dos títulos que acabamos de coletar tendo como referência janeiro do ano passado.


filter(ntnb, ref.date > '2020-01-01') %>%
ggplot(aes(x=ref.date, y=yield.bid*100, colour=asset.code))+
geom_line()+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 month"),
labels = date_format("%b/%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
labs(x='', y='% a.a.',
title='NTN-B',
caption='Fonte: Tesouro Direto')

_____________________

(*) Isso e muito mais você irá aprender no nosso Novo Curso Mercado Financeiro e Gestão de Portfólios.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.