Inflação está próxima ao piso do regime de metas

O Brasil opera desde 1999 o regime de metas para inflação - conhecido no mundo como Inflation Target -, donde o objetivo explícito do Banco Central é conduzir a política monetária de modo a manter a inflação próxima a uma meta previamente estabelecida pelo Conselho Monetário Nacional. Nesse regime, há uma meta explícita e bandas de tolerânciaque servem para acomodar choques diversos que ocorrem sobre a inflação ao longo do tempo. De modo a ilustrar a operação do regime de metas no Brasil, podemos construir um gráfico com a inflação, os núcleos de inflação, a meta e as bandas de tolerância.

O gráfico acima mostra todas essas variáveis e o último dado disponível para a inflação cheia, que fechou em 2,89% no acumulado em 12 meses até setembro. O piso da meta é de 2,75%, considerando 1,5 pontos percentuais de tolerância para mais ou menos em torno da meta de 4,25% para esse ano. Como se pode ver no gráfico, a inflação cheia flerta nesse momento com o piso do regime de metas.

O caminho para uma taxa básica nominal de juros de 4,5% no final do ano está aberto. Na verdade, não é mais nem um caminho: é uma avenida!

______________________

(*) O código para o gráfico estará disponível logo mais no Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.