Estimando uma Curva IS no Python

A curva IS é uma curva de demanda agregada da economia, descrevendo o equilíbrio no mercado de bens e serviços, sendo expressa pelo hiato do produto em função de suas próprias defasagens, da taxa real de juros e do resultado primário. Vejamos neste post a implementação da Curva IS utilizando o Python.

O objetivo do exercício será estimar uma versão da Curva IS do Modelo Semiestrutural de Pequeno Porte do BCB descrito nesse Relatório, conforme a equação descrita abaixo:

    $$h_t = \beta_0 + \sum_{i>0} \beta_{1i} h_{t-1} + \sum_{j>0} \beta_{2j} r_{t-j} +\sum_{k > 0} \beta_{3k} \Delta sup_{t-k} + u_t$$

Basicamente, a Curva IS estimada irá descrever a dinâmica do hiato do produto com base em suas próprias defasagens, da taxa de juros real ex-ante e da variação do superávit primário.

Para obter o código do modelo abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.