Usando um VECM para projetar o Desemprego no Brasil

A semana termina aqui na Análise Macro com mais uma edição do Clube do Código. Estará disponível no próximo domingo a Edição 68 do Clube, titulada Usando um VECM para projetar o Desemprego no Brasil. Ao longo da semana, os leitores desse espaço acompanharam tanto no Comentário de Conjuntura quanto na divulgação de indicadores feita hoje, uma preocupação com a projeção da taxa de desemprego. Na mais nova edição do Clube, detalhamos mais um modelo de previsão para a taxa de desemprego, utilizando um Vetor de Correção de Erros. O novo modelo de previsão para a taxa de desemprego utiliza pesquisas do Google, seguindo o paper "The predictive power of google search in forecasting US unemployment".

Acima temos um gráfico com as projeções da taxa de desemprego nos próximos seis meses. Abaixo, uma tabela com as previsões geradas pelo modelo.

Previsões para a Taxa de Desemprego
Lower Média Upper
Nov/19 11.2 11.4 11.5
Dez/19 11.0 11.2 11.4
Jan/20 11.1 11.4 11.8
Fev/20 11.3 11.8 12.3
Mar/20 11.5 12.1 12.8
Abr/20 11.1 11.9 12.7

O modelo utiliza as seguintes variáveis: (i) índice coincidente de desemprego da FGV; (ii) índice antecedente de emprego da FGV; (iii) índice de incerteza econômica da FGV; (iv) pesquisas no Google pela palavra 'emprego'; (v) IBC-BR; (vi) taxa de juros Selic.

Na Edição 68 do Clube do Código estão detalhados todos os códigos utilizados no exercício.

_________________________

Quer aprender a construir modelos de séries temporais? Veja nosso Curso de Séries Temporais usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

O que é GraphRAG e implementar usando LangChain

GraphRAG é uma técnica de recuperação de informação para LLMs que utiliza grafos de conhecimento para conectar entidades e relações, permitindo estruturar informações complexas presentes em textos. Neste exercício, mostramos como transformar as atas do Copom em um grafo capaz de compreender essas entidades e relações, respondendo a perguntas complexas de forma contextualizada. Com Python e LangChain, todo o processo se torna automatizado, simples e altamente explorável.

Shiny + Agentes de IA: como criar aplicativos web inteligentes

A combinação de interfaces de usuário interativas com o poder dos grandes modelos de linguagem (LLMs) está abrindo um universo de possibilidades. Imagine criar um aplicativo web que não apenas exibe dados, mas também conversa com o usuário, respondendo a perguntas complexas com base em uma base de conhecimento específica. Usando Shiny para Python e ferramentas de IA como as do Google, isso é mais acessível do que nunca.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.