Baixando planilhas do Novo CAGED com o R

No nosso Curso de Análise de Conjuntura usando o R, ensino os alunos a baixarem os dados agregados do Novo CAGED pelo IPEADATA usando o pacote de R ecoseries. O problema é que a atualização lá não parece ser em tempo real. Assim, para quem trabalha com dados de conjuntura, pode ser necessário baixar as horríveis planilhas do Novo CAGED diretamente do site do Ministério da Economia. Hoje pela manhã, acabei escrevendo um script para isso. Abaixo, o início dele.


########################################################
######## Baixar planilha CAGED #########################

library(readxl)
library(tidyverse)

url = 'http://pdet.mte.gov.br/images/Novo_CAGED/Ago2020/3-tabelas.xlsx'
download.file(url, destfile='caged.xlsx', mode='wb')
data = read_excel('caged.xlsx', sheet = 'Tabela 5.1',
range="B5:F13") %>%
mutate(`Mês` = parse_date(`Mês`, format='%B/%Y', locale=locale('pt')))

Para quem se interessar em ir conferir as planilhas, verá que de fato elas não são nada agradáveis para uma análise séria de dados. Por exemplo, o autor da planilha preenche com um traço os dados faltantes até dezembro/2020, bem como coloca o formato da data como, por exemplo, "Janeiro/2020", dentre outras coisas. Isso exige algum código para ler os dados. No exemplo acima, eu estou lendo uma das planilhas que traz a série de dados agregados de janeiro a agosto com uma função do pacote readxl. E para não ler as tais linhas com traços, acabei setando o argumento range. Também alterei a coluna de datas da tal planilha, através da função parse_date, de modo a poder produzir um gráfico como o abaixo.

Dada a precariedade da série, os números precisam ser vistos com cautela. É preciso levar em consideração, por exemplo, a sazonalidade. Mas, para o que importa para a gente, o importante é ter o dado disponível...

Tomare que nada mude no Ministério da Economia e o script sirva para o mês que vem, né PG?

________________

(*) Para ter acesso aos códigos completos do exercício, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições abertas para as Turmas Especiais dos nossos Cursos de Macro Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.