Índice de Desistência de Procura por Emprego (IDPE)

procuraOntem o IBGE divulgou a Pesquisa Mensal de Emprego (PME) de abril, indicando mais uma queda na taxa de desemprego: de 5% em março para 4,9%. A despeito do número aparentemente favorável, esse foi um mês em que a saída de pessoas da população economicamente ativa (PEA) mais que compensou a entrada de pessoas na população ocupada (PO). Em palavras outras, a menor procura por emprego torna-se mais relevante do que a contratação das empresas para explicar a queda da taxa de desemprego. Com efeito, a tabela ao lado mostra um Índice de Desistência de Procura por Emprego (IDPE), mostrado graficamente aqui. Toda vez que o desemprego cair porque o módulo da diferença da PEA entre um mês e o mês anterior foi superior ao respectivo módulo da PO, o índice atribui "1". Desde abril de 2002 isso aconteceu 27 vezes ou 19% dos casos. Ademais, esse foi o sexto mês consecutivo em que a PEA registra queda em relação ao mês anterior, indicando que as pessoas estão procurando menos emprego. Desse modo, mesmo com a baixa geração de vagas pelas empresas, o desemprego se mantém em patamar historicamente baixo.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.