Não é de hoje que técnicas de machine learning vêm sendo usadas para explorar características não lineares de séries temporais (econômicas), especialmente para finalidade de previsão. Como exemplo, apresentamos uma abordagem híbrida do modelo NNAR e comparamos suas previsões com as de mercado, encontrando resultados em linha com a literatura recente.
O PIB é uma variável econômica complexa e de difícil previsão. Neste artigo, mostramos que unir métodos simples e métodos avançados pode aumentar significativamente a previsibilidade do crescimento da economia.
Neste tutorial criamos a previsão da taxa de desocupação brasileira com todos os passos de coleta, tratamento, análise e modelagem no Python.
comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002
Criação Kamus – Hospedagem HostWP
como podemos ajudar?
Preencha os seus dados abaixo e fale conosco no WhatsApp
Boletim AM
Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.