
Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.
Este tutorial mostra como construir um supervisor multiagente usando LangGraph, integrando dois agentes especialistas: um focado em pesquisa na internet com Tavily e outro especializado em operações matemáticas. Para orquestrar esses agentes, utilizamos o modelo Gemini 2.0 da Google.
Neste post, mostramos passo a passo como criar um agente SQL com LangGraph para consultar dados financeiros de empresas brasileiras da CVM. O processo inclui baixar e tratar os dados (ETL), configurar o banco SQLite, criar prompts e montar um grafo de estados para que o agente interprete perguntas em linguagem natural e gere consultas SQL.
comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002
Criação Kamus
como podemos ajudar?
Preencha os seus dados abaixo e fale conosco no WhatsApp
Boletim AM
Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.